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The QNET package is a set of tools to aid in the design and analysis of photonic circuit models, but it features a flexible
symbolic algebra module that can be applied in a more general setting. Our proposed Quantum Hardware Description
Language [QHDL] serves to describe a circuit topology and specification of a larger entity in terms of parametrizable
subcomponents. By design this is analogous to the specification of electric circuitry using the structural description
elements of VHDL or Verilog.

The physical systems that can be modeled within the framework include quantum optical experiments that can be
described as nodes with internal degrees of freedom such as interacting quantum harmonic oscillators and/or N-level
quantum systems that, in turn are coupled to a finite number of bosonic quantum fields. Furthermore, the formalism
applies also to superconducting microwave circuit (Circuit QED) systems.

For a rigorous introduction to the underlying mathematical physics we refer to the original treatment of Gough and
James [GoughJames08], [GoughJames09] and the references given therein.

The main components of this package are:

1. A symbolic computer algebra package gnet .algebra for Hilbert Space quantum mechanical operators, the
Gough-James circuit algebra and also an algebra for Hilbert space states and Super-operators.

2. The QHDL language definition and parser gnet . ghdl including a front-end located at bin/parse_qghdl.
py that can convert a QHDL-file into a circuit component library file.

3. A library of existing primitive or composite circuit components gnet .circuit_components that can be
embedded into a new circuit definition.

In practice one might want to use these to:
1. Define and specify your basic circuit component model and create a library file, Circuit Component Definition
2. Use gschem (of gEDA) to graphically design a circuit model, Schematic Capture
3. Export the schematic to QHDL using gnet 1ist (also part of gEDA) or directly write a QHDL file, Netlisting

4. Parse the QHDL-circuit definition file into a Python circuit library component using the parser front-end bin/
parse_ghdl.py, Parsing OHDL

5. Analyze the model analytically using our symbolic algebra and/or numerically using QuTiP, Symbolic Algebra,
Symbolic Analysis and Simulation

This package is still work in progress and as it is currently being developed by a single developer (interested in
helping?), documentation and comprehensive testing code are still somewhat lacking. Any contributions, bug reports
and general feedback from end-users would be highly appreciated. If you have found a bug, it would be extremely
helpful if you could try to write a minimal code example that reproduces the bug. Feature requests will definitely be
considered. Higher priority will be given to things that many people ask for and that can be implemented efficiently.

To learn of how to carry out each of these steps, we recommend looking at the provided examples and reading the
relevant sections in the QNET manual. Also, if you want to implement and add your own primitive device models,
please consult the QNET manual.

Contents:
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CHAPTER 1

Installation/Setup

1.1

Dependencies

In addition to these core components, the software uses the following existing software packages:

0.

4.
5.
6.

Python version 2.6 or higher. QNET is still officially a Python 2 package, but migration to Python 3 should not
be too hard to achieve.

The gEDA toolsuite for its visual tool gschem for the creation of circuits end exporting these to QHDL
gnetlist. We have created device symbols for our primitive circuit components to be used with gschem
and we have included our own gnet1ist plugin for exporting to QHDL.

The SymPy symbolic algebra Python package to implement symbolic ‘scalar’ algebra, i.e. the coefficients
of state, operator or super-operator expressions can be symbolic SymPy expressions as well as pure python
numbers.

The QuTiP python package as an extremely useful, efficient and full featured numerical backend. Operator
expressions where all symbolic scalar parameters have been replaced by numeric ones, can be converted to
(sparse) numeric matrix representations, which are then used to solve for the system dynamics using the tools
provided by QuTiP.

The PyX python package for visualizing circuit expressions as box/flow diagrams.
The SciPy and NumPy packages (needed for QuTiP but also by the gnet . algebra package)
The PLY python package as a dependency of our Python Lex/Yacc based QHDL parser.

A convenient way of obtaining Python as well as some of the packages listed here (SymPy, SciPy, NumPy, PLY) is
to download the Enthought Python Distribution (EPD) or Anaconda which are both free for academic use. A highly
recommended way of working with QNET and QuTiP and just scientific python codes in action is to use the excellent
IPython shell which comes both with a command-line interface as well as a very polished browser-based notebook
interface.



http://www.python.org
http://www.gpleda.org
http://SymPy.org/
http://code.google.com/p/qutip/
http://pyx.sourceforge.net/
http://www.scipy.org/
http://numpy.scipy.org/
http://www.dabeaz.com/ply/
http://www.enthought.com/
https://store.continuum.io/cshop/anaconda/
http://ipython.org/
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1.2 Installation/Configuration

To install QNET you need a working Python installation as well as pip which comes pre-installed with both the
Enthought Python distribution and Anaconda. If you have already installed PyX just run: Run:

’pip install ONET

If you still need to install PyX, run:

’pip install —-process-dependency-links QONET

1.3 gEDA

Setting up gEDA/gschem/gnetlist is a bit more involved. If you are using Linux or OSX, geda is available via common
package managers such as port and homebrew on OSX or apt for Linux.

To configure interoperability with QNET/QHDL this you will have to locate the installation directory of QNET. This
can easily be found by running:

python —-c "import gnet, os; print (os.path.join(xos.path.dirname (gnet.__file_ ) .split(
/) [-11))
In BASH you can just run:

QONET=$ (python -c "import gnet, os; print (os.path.join(*os.path.dirname (gqnet.__ file_ ).
—split ('/'") [:=11))")

to store this path in a shell variable named QNET. To configure gEDA to include our special quantum circuit compo-
nent symbols you will need to copy the following configuration files from the $QNET/gEDA_support/config
directory to the SHOME/ . gEDA directory:

e ~/.gEDA/gafrc
e ~/.gEDA/gschemrc
Then install the QHDL netlister plugin within gEDA by creating a symbolic link (or copy the file there)

In -s $QNET/gEDA_support/gnet-ghdl.scm /path/to/gEDA_resources_folder/scheme/gnet-
—ghdl.scm

Note that you should replace ‘/path/to/gEDA _resources_folder” with the full path to the gEDA resources direc-
tory!

in my case that path is given by /opt/local/share/gEDA, but in general simply look for the gEDA-directory
that contains the file named system-gafrc.

4 Chapter 1. Installation/Setup


https://pip.pypa.io/en/latest/installing.html
http://pyx.sourceforge.net/
http://pyx.sourceforge.net/

CHAPTER 2

Symbolic Algebra

2.1 The Abstract Algebra module

The module features generic classes for encapsulating expressions and operations on expressions. It also includes
some basic pattern matching and expression rewriting capabilities.

The most important classes to derive from for implementing a custom ‘algebra’ are gnet.algebra.
abstract_algebra.Expression and gnet.algebra.abstract_algebra.Operation, where the
second is actually a subclass of the first.

The Operation class should be subclassed to implement any structured expression type that can be specified in
terms of a head and a (finite) sequence of operands:

Head (opl, opl, ..., opN)

An operation is assumed to have immutable operands, i.e., if one wishes to change the operands of an Operation,
one rather creates a new Operation with modified Operands.

2.1.1 Defining Operation subclasses
The single most important method of the Operation class is the gnet.algebra.abstract_algebra.
Operation.create () classmethod.

Automatic expression rewriting by modifying/decorating the gnet.algebra.abstract_algebra.
Operation.create () method

A list of class decorators:
* gnet.algebra.abstract_algebra.assoc ()
* gnet.algebra.abstract_algebra.idem()
* gnet.algebra.abstract_algebra.orderby ()

* gnet.algebra.abstract_algebra.filter_neutral ()
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* gnet.algebra.abstract_algebra.check _signature ()
* gnet.algebra.abstract_algebra.match_replace()

* gnet.algebra.abstract_algebra.match_replace _binary ()

2.1.2 Pattern matching

The gnet.algebra.abstract_algebra.Wildcard class.
The gnet.algebra.abstract_algebra.match () function.

For a relatively simple example of how an algebra can be defined, see the Hilbert space algebra defined in gnet.
algebra.hilbert_space_algebra.

2.2 Hilbert Space Algebra

This covers only finite dimensional or countably infinite dimensional Hilbert spaces.

The basic abstract class that features all properties of Hilbert space objects is given by: gnet.algebra.
hilbert_space_algebra.HilbertSpace. Its most important subclasses are:

* local/primitive degrees of freedom (e.g. a single multi-level atom or a cavity mode) are described by a gnet.
algebra.hilbert_space_algebra.LocalSpace. Every local space is identified by

e composite  tensor product spaces are given by instances of the gnet.algebra.
hilbert_space_algebra.ProductSpace class.

* the qnet.algebra.hilbert_space_algebra.TrivialSpace represents a trivial' Hilbert space

’HOZ(C

e the gnet.algebra.hilbert_space_algebra.FullSpace represents a Hilbert space that includes
all possible degrees of freedom.

2.2.1 Examples

A single local space can be instantiated in several ways. It is most convenient to use the gnet.algebra.
hilbert_space_algebra.local_space () method:

>>> local_space (1)
LocalSpace (1, '")

This method also allows for the specification of the dimension of the local degree of freedom’s state space:

>>> s = local_space(l, dimension = 10)
>>> g
LocalSpace(1l, '")
>>> s.dimension
10
>>> s.basis
o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Alternatively, one can pass a sequence of basis state labels instead of the dimension argument:

! trivial in the sense that Ho ~ C, i.e., all states are multiples of each other and thus equivalent.

6 Chapter 2. Symbolic Algebra
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>>> lambda_atom_space = local_space('las', basis = ('e', 'h',
>>> lambda_atom_space
LocalSpace('las', '")
>>> lambda_atom_space.dimension
3
>>> lambda_atom_space.basis
('e', 'h', 'g")

Finally, one can pass a namespace argument, which is useful if one is working with multiple copies of identical
systems, e.g. if one instantiates multiple copies of a particular circuit component with internal degrees of freedom:

>>> s_qgl = local_space('s', namespace = 'gl', basis = ('g', 'h'"))
>>> s_g2 = local_space('s', namespace = 'g2', basis = ('g', 'h'))
>>> S,C_{l
LocalSpace('s', 'gl'")
>>> s_qg2
LocalSpace('s', 'g2'")
>>> s_qgl * s_qg2
ProductSpace (LocalSpace('s', 'gl'), LocalSpace('s', 'g2'))
The default namespace is the empty string ' '. Here, we have already seen the simplest way to create a tensor
product of spaces:
>>> local_space(l) * local_space(2)
ProductSpace (LocalSpace(l, ''), LocalSpace(2, ''"))
Note that this tensor product is commutative
>>> local_space (2) % local_space(l)
ProductSpace (LocalSpace(l, ''), LocalSpace(2, ''))
>>> local_space(2) * local_space(l) == local_space(l) * local_space(2)
True
and associative
>>> (local_space(l) * local_space(2)) % local_space(3)
ProductSpace (LocalSpace('l', ''), LocalSpace('2', '"'), LocalSpace('3', '"))

2.3 The Operator Algebra module

This module features classes and functions to define and manipulate symbolic Operator expressions. Oper-
ator expressions are constructed from sums (gnet.algebra.operator_algebra.OperatorPlus) and
products (gnet.algebra.operator_algebra.OperatorTimes) of some basic elements, most impor-
tantly local operators, such as the annihilation (gqnet.algebra.operator_algebra.Destroy) and cre-
ation (gnet.algebra.operator_algebra.Create) operators as, al of a quantum harmonic oscillator de-
gree of freedom s. Further important elementary local operators are the switching operators o7, := 17)s (K,
(gnet.algebra.operator_algebra.LocalSigma). Each operator has an associated gnet.algebra.
operator_algebra.Operator.space property which gives the Hilbert space (cf gnet.algebra.
hilbert_space_algebra.HilbertSpace) on which it acts non-trivially. We don’t explicitly distinguish
between tensor-products X ® Y,. of operators on different degrees of freedom s, (which we designate as local
spaces) and operator-composition-products X, - Y, of operators acting on the same degree of freedom s. Concep-
tionally, we assume that each operator is always implicitly tensored with identity operators acting on all un-specified
degrees of freedom. This is typically done in the physics literature and only plays a role when tansforming to a
numerical representation of the problem for the purpose of simulation, diagonalization, etc.

2.3. The Operator Algebra module 7
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2.3.1 All Operator classes

A complete list of all local operators is given below:

* Harmonic oscillator mode operators a, al (cf gnet .algebra.operator_algebra.Destroy, gnet.
algebra.operator_algebra.Create)

* o-switching operators o7, := |j) (k| (cf gnet .algebra.operator_algebra.LocalSigma)

* coherent displacement operators Dg(a) := exp (aa}; — a*as) (cfgnet.algebra.operator_algebra.
Displace)

* phase operators Ps(¢) := exp (i¢aj[,as) (cf gnet.algebra.operator_algebra.Phase)
* squeezing operators Ss(n) = exp [% (nal2 — n*ai)} (cf gnet.algebra.operator_algebra.
Squeeze)
Furthermore, there exist symbolic representations for constants and symbols:
* the identity operator (cf qnet .algebra.operator_algebra.IdentityOperator)
¢ and the zero operator (cf gnet .algebra.operator_algebra.ZeroOperator)
* an arbitrary operator symbol (cf gnet .algebra.operator_algebra.OperatorSymbol)
Finally, we have the following Operator operations:
* sums of operators X; + Xo +---+ X, (cf gnet .algebra.operator_algebra.OperatorPlus)
* products of operators X1 X5 --- X, (cf gnet.algebra.operator_algebra.OperatorTimes)
« the Hilbert space adjoint operator X1 (cf gnet .algebra.operator_algebra.Adjoint)
e scalar multiplication AX (cf gnet .algebra.operator_algebra.ScalarTimesOperator)

+ pseudo-inverse of operators X  satisfying X XX = X and X TXX* = Xt aswell as (X X)T =
X+tXand (XX1)T = XX+ (cfgnet.algebra.operator_algebra.PseudoInverse)

« the kernel projection operator Py, y satisfying both XPx.,x =0 and XTX = 1 — Pgex (cf gnet.
algebra.operator_algebra.NullSpaceProjector)

* Partial traces over Operators Tr; X (cf gnet.algebra.operator_algebra.OperatorTrace)

For a list of all properties and methods of an operator object, see the documentation for the basic gnet .algebra.
operator_algebra.Operator class.

2.3.2 Examples
Say we want to write a function that constructs a typical Jaynes-Cummings Hamiltonian
H = Acto +0a'a +ig(oa’ — oa) +ie(a — al)

for a given set of numerical parameters:

def H_JaynesCummings (Delta, Theta, epsilon, g, namespace = ''):

# create Fock— and Atom local spaces
fock = local_space('fock', namespace = namespace)
tls = local_space('tls', namespace = namespace, basis = ('e', 'g'))

# create representations of a and sigma
a = Destroy (fock)

(continues on next page)

8 Chapter 2. Symbolic Algebra
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(continued from previous page)

sigma = LocalSigma(tls, 'g', 'e')

H = (Delta * sigma.dag() * sigma # detuning from atomic,
—resonance
+ Theta * a.dag() * a # detuning from cavity,,
—resonance
+ I x g * (sigma *» a.dag() - sigma.dag() = a) # atom-mode coupling, I =,
—sqgrt (-1)
+ I » epsilon = (a - a.dag())) # external driving,,
—amplitude
return H

Here we have allowed for a variable namespace which would come in handy if we wanted to construct an overall
model that features multiple Jaynes-Cummings-type subsystems.

By using the support for symbolic sympy expressions as scalar pre-factors to operators, one can instantiate a Jaynes-
Cummings Hamiltonian with symbolic parameters:

>>> Delta, Theta, epsilon, g = symbols('Delta, Theta, epsilon, g', real = True)
>>> H = H_JaynesCummings (Delta, Theta, epsilon, g)
>>> str (H)

'Delta Pi_e”[tls] + 1I*g ((a_fock)”"* sigma_ge”[tls] - a_fock sigma_eg”[tls]) +
—Ixepsilon ( - (a_fock)”x + a_fock) + Theta (a_fock)”"x a_fock'

>>> H.space
ProductSpace (LocalSpace ('fock', ''), LocalSpace('tls', ''"))

or equivalently, represented in latex via H. tex () this yields:
AHZIS + 19 (agocko'g; - afocko'gsg) + 1€ (7041001( + afock) + @a;rockafock

Operator products between commuting operators are automatically re-arranged such that they are ordered according
to their Hilbert Space

>>> Create (2) = Create(l)
OperatorTimes (Create (1), Create(2))

There are quite a few built-in replacement rules, e.g., mode operators products are normally ordered:

>>> Destroy(l) x Create(l)
1 + Create(l) * Destroy(l)

Or for higher powers one can use the expand () method:

>>> (Destroy(l) = Destroy(l) = Destroy(l) =% Create(l) = Create(l) =% Create(l)).
—expand ()

(6 + Create(l) % Create(l) % Create(l) = Destroy(l) =% Destroy(l) % Destroy(l) + 9
—% Create(l) = Create(l) x Destroy(l) = Destroy(l) + 18 % Create(l) = Destroy(l))

2.4 The Circuit Algebra module

In their works on networks of open quantum systems [GoughJames08], [GoughJames09] Gough and James have
introduced an algebraic method to derive the Quantum Markov model for a full network of cascaded quantum systems
from the reduced Markov models of its constituents. A general system with an equal number n of input and output

2.4. The Circuit Algebra module 9
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channels is described by the parameter triplet (S, L, H), where H is the effective internal Hamilton operator for the
system, L = (L1, Lo, ..., L,)T the coupling vector and S = (Sjk)7 k=1 is the scattering matrix (whose elements are
themselves operators). An element L of the coupling vector is given by a system operator that describes the system’s
coupling to the k-th input channel. Similarly, the elements .S, of the scattering matrix are in general given by system
operators describing the scattering between different field channels j and k. The only conditions on the parameters
are that the hamilton operator is self-adjoint and the scattering matrix is unitary:

H*=Hand STS=8Sf=1,.

We adhere to the conventions used by Gough and James, i.e. we write the imaginary unit is given by 7 := v/ —1,
the adjoint of an operator A is given by A*, the element-wise adjoint of an operator matrix M is given by M¥. Its

transpose is given by M7 and the combination of these two operations, i.e. the adjoint operator matrix is given by
Mt = (M7T)f = (MHT.

2.4.1 Fundamental Circuit Operations

The basic operations of the Gough-James circuit algebra are given by:

— -
th
— r—
— —
Q2
— -
Flg 1: Ql H QQ
— - |a—
Q2 h
e o M
Fig.2: Q2 < Q1
— -
—— -
Q
L
Fig. 3: [Q]1H4

In [GoughJames09], Gough and James have introduced two operations that allow the construction of quantum optical
‘feedforward’ networks:

1. The concatenation product describes the situation where two arbitrary systems are formally attached
to each other without optical scattering between the two systems’ in- and output channels

10 Chapter 2. Symbolic Algebra
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S 0 L
(S1,Ly, Hy) B (Sy, Lo, Hy) = ! ATt Hy+ Ho
0 S, L

1

Note however, that even without optical scattering, the two subsystems may interact directly via shared
quantum degrees of freedom.

2. The series product is to be used for two systems Q); = (S;,L;, H;), j = 1,2 of equal channel
number n where all output channels of ), are fed into the corresponding input channels of ()2

(S2, Lo, Hy) <1 (S1,Ly, Hy) = (52517112 +SoLy, Hi + Ho + {Lgszlq})

From their definition it can be seen that the results of applying both the series product and the concatenation prod-
uct not only yield valid circuit component triplets that obey the constraints, but they are also associative opera-
tions.footnote{ For the concatenation product this is immediately clear, for the series product in can be quickly verified
by computing (Q1 <1Q2) <@Q3 and Q1 < (Q2 < Q3). To make the network operations complete in the sense that it can
also be applied for situations with optical feedback, an additional rule is required: The feedback operation describes
the case where the k-th output channel of a system with n > 2 is fed back into the [-th input channel. The result is a
component with n — 1 channels:

(ST H) ],y = (ST, 0T)
where the effective parameters are given by [GoughJames08]

Sy
Sa

g+ | Sk—10 | T=8)7" (Sk1 Sk2 -+ Ski—t Skar o+ Skn)
Sk+11

)

Snl
S
Sa

L=Ly+ | Sk—11 | (1= Sw) 'Ly,
Sk+11

Snl

H=H+SS Y LiSq| (1—Sw) 'L
j=1

Here we have written S ;j as a shorthand notation for the matrix S with the k-th row and [-th column removed and
similarly L) is the vector L with its k-th entry removed. Moreover, it can be shown that in the case of multiple
feedback loops, the result is independent of the order in which the feedback operation is applied. Note however that
some care has to be taken with the indices of the feedback channels when permuting the feedback operation.

The possibility of treating the quantum circuits algebraically offers some valuable insights: A given full-system triplet
(S, L, H) may very well allow for different ways of decomposing it algebraically into networks of physically realistic
subsystems. The algebraic treatment thus establishes a notion of dynamic equivalence between potentially very differ-
ent physical setups. Given a certain number of fundamental building blocks such as beamsplitters, phases and cavities,
from which we construct complex networks, we can investigate what kinds of composite systems can be realized. If
we also take into account the adiabatic limit theorems for QSDEs (cite Bouten2008a,Bouten2008) the set of physically

2.4. The Circuit Algebra module 11
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realizable systems is further expanded. Hence, the algebraic methods not only facilitate the analysis of quantum cir-
cuits, but ultimately they may very well lead to an understanding of how to construct a general system (S, L, H) from
some set of elementary systems. There already exist some investigations along these lines for the particular subclass
of linear systems (cite Nurdin2009a,Nurdin2009b) which can be thought of as a networked collection of quantum
harmonic oscillators.

2.4.2 Representation as Python objects

This file features an implementation of the Gough-James circuit algebra rules as introduced in [GoughJames0O8] and
[GoughJames09]. Python objects that are of the gnet . algebra.circuit_algebra.Circuit type have some
of their operators overloaded to realize symbolic circuit algebra operations:

>>> A = CircuitSymbol ('A', 2)
>>> B = CircuitSymbol ('B', 2)
>>> A << B

SeriesProduct (A, B)
>>> A + B

Concatenation (A, B)
>>> FB(A, 0, 1)

Feedback (A, 0, 1)

For a thorough treatment of the circuit expression simplification rules see Properties and Simplification of Circuit
Algebraic Expressions.

2.4.3 Examples

Extending the JaynesCummings problem above to an open system by adding collapse operators L; = +/ka and

L2 = ﬁ(f.

def SLH_JaynesCummings (Delta, Theta, epsilon, g, kappa, gamma, namespace = ''):

# create Fock- and Atom local spaces
fock = local_space('fock', namespace = namespace)
tls = local_space('tls', namespace = namespace, basis = ('e', 'g'))

# create representations of a and sigma
a = Destroy (fock)

sigma = LocalSigma(tls, 'g', 'e')

# Trivial scattering matrix
S = identity_matrix(2)

# Collapse/Jump operators

L1 = sqgrt (kappa) * a # Decay of cavity mode_,
—~through mirror
L2 = sgrt (gamma) * sigma # Atomic decay due to

—spontaneous emission into outside modes.
L = Matrix([[L1], \
[L211)

# Hamilton operator

H = (Delta * sigma.dag() * sigma # detuning from atomic,
—resonance
+ Theta * a.dag() * a # detuning from cavity,,

—resonance

(continues on next page)

12 Chapter 2. Symbolic Algebra




qnet Documentation, Release 1.4.1

(continued from previous page)

+ I » g % (sigma *» a.dag() — sigma.dag() = a) # atom—mode coupling, I =_
—sqgrt (-1)
+ I = epsilon » (a - a.dag())) # external driving,

—amplitude

return SLH(S, L, H)

Consider now an example where we feed one Jaynes-Cummings system’s output into a second one:

Delta, Theta, epsilon, g = symbols('Delta, Theta, epsilon, g', real = True)
kappa, gamma = symbols ('kappa, gamma')

JC1l = SLH_JaynesCummings (Delta, Theta, epsilon, g, kappa, gamma, namespace = 'jcl')
JCc2 SLH_JaynesCummings (Delta, Theta, epsilon, g, kappa, gamma, namespace = 'jc2')

SYS = (JC2 + cid(l)) << P_sigma (0, 2, 1) << (JC1 + cid(1l))

The resulting system’s block diagram is:

SLIIr(IikI<.|X||HI<.| E SLIIE.‘ kjoa@tls; 0

and its overall SLH model is given by:

1 0 O \/Ea’fOijcl + \/EafOijQ
tlsjco tls; tls; i tls; tls; 1
00 1], 70'%17(; ’AHG el A1_Ie 1% +ag afockjclog»eJCl - afOijcla—ngCl g afOijc2
s
0 1 0 \ﬁgg,elcl

2.5 The Super-Operator Algebra module

The specification of a quantum mechanics symbolic super-operator algebra. Each super-operator has an associated
space property which gives the Hilbert space on which the operators the super-operator acts non-trivially are them-
selves acting non-trivially.

The most basic way to construct super-operators is by lifting ‘normal’ operators to linear pre- and post-multiplication
super-operators:

>>> A, B, C = OperatorSymbol ("A", FullSpace), OperatorSymbol ("B", FullSpace),
—OperatorSymbol ("C", FullSpace)
>>> SPre(A) * B

A x B
>>> SPost (C) %= B
B » C
>>> (SPre(A) % SPost(C)) = B
A x B x C
>>> (SPre(A) — SPost(A)) = B # Linear super-operator associated with A that,,

—maps B ——> [A,B]
A B - B x A

There exist some useful constants to specify neutral elements of super-operator addition and multiplication:

2.5. The Super-Operator Algebra module 13
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ZeroSuperOperator IdentitySuperOperator

Super operator objects can be added together in code via the infix ‘+’ operator and multiplied with the infix *’
operator. They can also be added to or multiplied by scalar objects. In the first case, the scalar object is multiplied by
the IdentitySuperOperator constant.

Super operators are applied to operators by multiplying an operator with superoperator from the left:

>>> S = SuperOperatorSymbol ("S", FullSpace)
>>> A = OperatorSymbol ("A", FullSpace)
>>> S x A
SuperOperatorTimesOperator (S, A)
>>> isinstance (SxA, Operator)
True

The result is an operator.

2.6 The State (Ket-) Algebra module

This module implements a basic Hilbert space state algebra where by default we represent states ¢ as ‘Ket’ vectors
1 — |1). However, any state can also be represented in its adjoint Bra form, since those representations are dual:

Y [Y) < (Y

States can be added to states of the same Hilbert space. They can be multiplied by:
* scalars, to just yield a rescaled state within the original space
* operators that act on some of the states degrees of freedom (but none that aren’t part of the state’s Hilbert space)
* other states that have a Hilbert space corresponding to a disjoint set of degrees of freedom
Furthermore,
* aKet object can multiply a Bra of the same space from the left to yield a Ket Bra type operator.
And conversely,

* a Bra can multiply a Ket from the left to create a (partial) inner product object BraKet. Currently, only full
inner products are supported, i.e. the Ket and Bra operands need to have the same space.

14 Chapter 2. Symbolic Algebra




CHAPTER 3

Properties and Simplification of Circuit Algebraic Expressions

By observing that we can define for a general system @Q = (S,L,H) its series inverse system Q<!
(St, —S'L, —H)

(S,L,H) < (ST, -S'L,~H) = (8!, -S'L,~H) < (S,L, H) = (I,,,0,0) =: id,,,

we see that the series product induces a group structure on the set of n-channel circuit components for any n > 1. It
can easily be verified that the series inverse of the basic operations is calculated as follows

(Q19Q) ' =@ <y
(QBQ) = 'Be;!
Q) =@, -

In the following, we denote the number of channels of any given system @ = (S, L, H) by cdim @ := n. The most
obvious expression simplification is the associative expansion of concatenations and series:

(A1<]A2)<](Bl <]BQ):A1 <]A2<Bl<]BQ
(CLECy) B (D, B D,) = C, BC, B D, BD,

A further interesting property that follows intuitively from the  graphical representation
(cf.~Fig.~ref{fig:decomposition_law}) is the following tensor decomposition law

(ABB)<(CED)=(A<C)B(B<D),

which is valid for cdim A = c¢dim C and cdim B = cdim D.

The following figures demonstrate the ambiguity of the circuit algebra:

15
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Here, a red box marks a series product and a blue box marks a concatenation. The second version expression has the
advantage of making more explicit that the overall circuit consists of two channels without direct optical scattering.

It will most often be preferable to use the RHS expression of the tensor decomposition law above as this enables
us to understand the flow of optical signals more easily from the algebraic expression. In [GoughJames09] Gough
and James denote a system that can be expressed as a concatenation as reducible. A system that cannot be further
decomposed into concatenated subsystems is accordingly called irreducible. As follows intuitively from a graphical
representation any given complex system @) = (S, L, H) admits a decomposition into 1 < N < cdim (@ irreducible
subsystems () = @1 H Q2 B - - - H @, where their channel dimensions satisfy cdim ¢; > 1, 7 = 1,2,... N and
Z;.V:l cdim @; = cdim (. While their individual parameter triplets themselves are not uniquely determinedfoot-
note{Actually the scattering matrices {S;} and the coupling vectors {L;} are uniquely determined, but the Hamil-
tonian parameters {H; } must only obey the constraint Z;yzl H; = H.}, the sequence of their channel dimensions
(cdim @1, cdim @3, . ..cdim Qn) =: bls @ clearly is. We denote this tuple as the block structure of (). We are now
able to generalize the decomposition law in the following way: Given two systems of n channels with the same block
structure bls A = bls B = (n, ...ny ), there exist decompositions of A and B such that

AQB:(AlﬂBl)BHBH(ANQBN)

with cdim A; = cdim B; = n;, j = 1,...N. However, even in the case that the two block structures are not
equal, there may still exist non-trivial compatible block decompositions that at least allow a partial application of the
decomposition law. Consider the example presented in Figure (block_structures).

Fig. 4: Optimal decomposition into (3, 1)

Even in the case of a series between systems with unequal block structures, there often exists a non-trivial common
block decomposition that simplifies the overall expression.

16 Chapter 3. Properties and Simplification of Circuit Algebraic Expressions
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3.1 Permutation objects

The algebraic representation of complex circuits often requires systems that only permute channels without actual
scattering. The group of permutation matrices is simply a subgroup of the unitary (operator) matrices. For any
permutation matrix P, the system described by (P, 0,0) represents a pure permutation of the optical fields (ref fig
permutation).

Fig. 5: A graphical representation of P, where o = (4,1, 5,2, 3) in image tuple notation.

. . . . 1 2 . n
A permutation ¢ of n elements (o € 3,,) is often represented in the following form (0 1) o) ... o (n))’ but
obviously it is also sufficient to specify the tuple of images (o(1),0(2),...,0(n)). We now define the permutation

matrix via its matrix elements

(Po)kt = Spo@) = Oo—1(k)i-

Such a matrix then maps the j-th unit vector onto the o (j)-th unit vector or equivalently the j-th incoming optical
channel is mapped to the o(j)-th outgoing channel. In contrast to a definition often found in mathematical literature
this definition ensures that the representation matrix for a composition of permutations o5 o ¢ results from a product
of the individual representation matrices in the same order P,,.,, = P,,P,,. This can be shown directly on the
order of the matrix elements

(Posoos )kt = Ok(oroorn)) = D OkiSitasor)t) = D Fkos()00s (i) (02000) (1)
J J

= ks ()Ioaoaor®) = D Okoa()Biory = D (Pra)ij (P )
J J J
where the third equality corresponds simply to a reordering of the summands and the fifth equality follows from the
bijectivity of 5. In the following we will often write P, as a shorthand for (P,,0,0). Thus, our definition ensures
that we may simplify any series of permutation systems in the most intuitive way: P,, < P,, = P,,05,. Obviously
the set of permutation systems of n channels and the series product are a subgroup of the full system series group of n
channels. Specifically, it includes the identity idn = P,

idy, *
From the orthogonality of the representation matrices it directly follows that PZ = P 1 For future use we also define
a concatenation between permutations

o B oy = 1 2 n n—+1 n—+2 n—+m
! 2= 01(1) 01(2) Ul(n) n+02(1) n+02(2) n+02(m) ’
which satisfies P,, B P,, = P, m,, by definition. Another helpful definition is to introduce a special set of permuta-

tions that map specific ports into each other but leave the relative order of all other ports intact:

1 E—1 k k+1 ... 1—1 1 I1+1 n
fork <1
(n) 1 E—1 1 k... 1-2 1—1 1+1 n
w L=
Lk 1 I—-1 1 I+1 ... k=1 k k+1 n
fork > 1
1 I—1 14+1 142 ... k 1 k+1 n

3.1. Permutation objects 17
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"= Pw(n) .

We define the corresponding system objects as W, :
l+—k

3.2 Permutations and Concatenations

Given a series P, <1(Q1BQ-2H- - -BQ n) where the (Q); are irreducible systems, we analyze in which cases it is possible
to (partially) “move the permutation through” the concatenated expression. Obviously we could just as well investigate
the opposite scenario (Q1 Q2 H- - -BQ n) < P,, but this second scenario is closely relatedfootnote { Series-Inverting
a series product expression also results in an inverted order of the operand inverses (Q; <1 Q2)<~ ! = §_1 < Qf'_l.
Since the inverse of a permutation (concatenation) is again a permutation (concatenation), the cases are in a way “dual”
to each other. }.

Block-permuting permutations

The simples case is realized when the permutation simply permutes whole blocks intactly

."1. 1 g
-
As
-

Flg 6: P, < (Al H AQ)

Flg 7. (A2 = Al) < P,

A block permuting series.

Given a block structure n := (n1,n9,...nx) a permutation o € 3, is said to block permute n iff there exists a
permutation ¢ € X such that

P <(@QiBQB---BON)= (P <(@QiBQB---BQN)<P,-1)< P,
= (Qs1yBQs2)B---BQsy) <Py

Hence, the permutation o, given in image tuple notation, block permutes n iff forall 1 < 7 < N andforall0 < k < n;
we have o(0j+k) = o(0;)+k, where we have introduced the block offsets 0; := 1+, n;. When these conditions
are satisfied, & may be obtained by demanding that 5(a) > &(b) < o(0,) > o(0p). This equivalence reduces the
computation of & to sorting a list in a specific way.

Block-factorizing permutations

The next-to-simplest case is realized when a permutation o can be decomposed o = oy, o g; into a permutation
oy, that block permutes the block structure n and an internal permutation o; that only permutes within each block,
i.e.~:math:sigma_{rm i} = sigma_I boxplus sigma_2 boxplus dots boxplus sigma_N. In this case we can perform the
following simplifications

PUQ(QIBHQQEE"'EHQN):Pa'b<][(Pz71 <]CQI)BH(P)(TQ<1622)HE|"'EE|(PUN<162N)]~

18 Chapter 3. Properties and Simplification of Circuit Algebraic Expressions



qnet Documentation, Release 1.4.1

We see that we have reduced the problem to the above discussed case. The result is now

P(7 < (Ql B--- EHQN) = |:(PO'U~b(1) < Q(fb(l)) BB (P(70~b(1\r) < Qo’b(N)):| < P0b~

In this case we say that o block factorizes according to the block structure n. The following figure illustrates an
example of this case.
A,
Flg 8: P, < (A1 H AQ)
A

Flg 9: Po'b <]P01. < (Al EHAQ)

Fig. 10: ((P,, < A2) B A1) < Py,

A block factorizable series.

A permutation o block factorizes according to the block structure n iff for all 1 < j < N we have maxo<x<n,; 0(0;j +
k) —ming<p <, 0(05 + k') = n; — 1, with the block offsets defined as above. In other words, the image of a single
block is coherent in the sense that no other numbers from outside the block are mapped into the integer range spanned
by the minimal and maximal points in the block’s image. The equivalence follows from our previous result and the
bijectivity of o.

The general case

In general there exists no unique way how to split apart the action of a permutation on a block structure. However, it
is possible to define a some rules that allow us to “move as much of the permutation” as possible to the RHS of the
series. This involves the factorization o = o o oy, o g; defining a specific way of constructing both oy, and o; from o.
The remainder oy can then be calculated through

-1 -1
Ox = 000; 00y .

Hence, by construction, oy, o o; factorizes according to n so only oy remains on the exterior LHS of the expression.

So what then are the rules according to which we construct the block permuting o}, and the decomposable ;7 We
wish to define o; such that the remainder o o o e 0x © oy, does not cross any two signals that are emitted from the
same block. Since by construction o}, only permutes full blocks anyway this means that o also does not cross any two
signals emitted from the same block. This completely determines o; and we can therefore calculate o o o, L=y o0
as well. To construct oy, it is sufficient to define an total order relation on the blocks that only depends on the block
structure n and on o o o, . We define the order on the blocks such that they are ordered according to their minimal

3.2. Permutations and Concatenations 19
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image point under o. Since o o o, ! does not let any block-internal lines cross, we can thus order the blocks according
to the order of the images of the first signal o0 o o, ! (0;). In (ref fig general_factorization) we have illustrated this with
an example.

Fig. 13: (P,, < (P,, < A2) B A1) < Py,

A general series with a non-factorizable permutation. In the intermediate step we have explicitly separated o =
Ox © Op O Oj.

Finally, it is a whole different question, why we would want move part of a permutation through the concatenated
expression in this first place as the expressions usually appear to become more complicated rather than simpler. This
is, because we are currently focussing only on single series products between two systems. In a realistic case we have
many systems in series and among these there might be quite a few permutations. Here, it would seem advantageous to
reduce the total number of permutations within the series by consolidating them where possible: P,, < P,, = Py 00, -
To do this, however, we need to try to move the permutations through the full series and collect them on one side (in
our case the RHS) where they can be combined to a single permutation. Since it is not always possible to move a
permutation through a concatenation (as we have seen above), it makes sense to at some point in the simplification
process reverse the direction in which we move the permutations and instead collect them on the LHS. Together these
two strategies achieve a near perfect permutation simplification.

3.3 Feedback of a concatenation

A feedback operation on a concatenation can always be simplified in one of two ways: If the outgoing and incoming
feedback ports belong to the same irreducible subblock of the concatenation, then the feedback can be directly applied
only to that single block. For an illustrative example see the figures below:

Reduction to feedback of subblock.

If, on the other, the outgoing feedback port is on a different subblock than the incoming, the resulting circuit actually
does not contain any real feedback and we can find a way to reexpress it algebraically by means of a series product.

Reduction of feedback to series, first example
Reduction of feedback to series, second example

To discuss the case in full generality consider the feedback expression [A B B];_,; with cdim A = n 4 and cdim B =
np and where A and B are not necessarily irreducible. There are four different cases to consider.

20 Chapter 3. Properties and Simplification of Circuit Algebraic Expressions
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Flg 16: [Al H A2]1_>3

. AE :><'I

Fig. 17: Ay < W{?, <1 (A, Bidy)

Flg 18: [Al H A2]2H1

T .

Flg 19: (Al H ldl) < A,

3.3. Feedback of a concatenation 21
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* k,1 < ny: In this case the simplified expression should be [A]y_,; B B

e k,1 > ny4: Similarly as before but now the feedback is restricted to the second operand A H [B](k,n A)—=(—na)
cf. Fig. (ref fig fc_irr).

e k < mnyu < I: This corresponds to a situation that is actually a series and can be re-expressed as (idns — 1 B
B)« W((lri)l)%k < (A+1idng — 1), cf. Fig. (ref fig fc_rel).

* | < ny < k: Again, this corresponds a series but with a reversed order compared to above (A + idng — 1) <
Wl(i)(k_l) < (idng — 1 B B), cf. Fig. (ref fig fc_re2).

3.4 Feedback of a series

There are two important cases to consider for the kind of expression at either end of the series: A series starting or
ending with a permutation system or a series starting or ending with a concatenation.

K

Flg 20: [Ag < (Al H AQ)]QHl

— 4—-—| Ay |<— b
Az .

Flg 21: (Ag < (Al H ldg)) < Ao

Reduction of series feedback with a concatenation at the RHS

Fig. 22: [A3 < PO-}Q_)l

Reduction of series feedback with a permutation at the RHS

1) [A < (CH D)]g—i: We define nc = cdim C and n4 = cdim A. Without too much loss of generality,
let’s assume that [ < n¢ (the other case is quite similar). We can then pull D out of the feedback loop:
[A<(CHD)kos — [A<(CHBidnp)|k— < (idne — 1 B D). Obviously, this operation only makes
sense if D # idnp. The case [ > n¢ is quite similar, except that we pull C' out of the feedback. See
Figure (ref fig fs_c) for an example.

2. We now consider [(C' B D) <1 E]j—,; and we assume k < n¢ analogous to above. Provided that
D # idnp, we can pull it out of the feedback and get (idnc — 1 D) < [(C Bidnp) < Elx—-

22 Chapter 3. Properties and Simplification of Circuit Algebraic Expressions
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-

Fig. 23: [A3]2_>3 < P5

3) [A < P,]i—i: The case of a permutation within a feedback loop is a lot more intuitive to understand
graphically (e.g., cf. Figure ref fig fs_p). Here, however we give a thorough derivation of how a permuta-
tion can be reduced to one involving one less channel and moved outside of the feedback. First, consider

the equality [A < w™ |k—1 = [A]x—; which follows from the fact that Wj(")

. . . ](*l . A
incoming signals except the [-th. Now, rewrite

, preserves the order of all

[A< P, =[A< P, < Wl(") <W™ 1

+~n n<—l1
- [A < Pa < I/Vlgﬁ)n}k%n
= [A < W(n) < (W(n) ) <P, VVl(—n)]k—m

o(l)<n n«o(l

Turning our attention to the bracketed expression within the feedback, we clearly see that it must be a

permutation system P, = Wé@a(l) <P, < Wl(ﬁ)n that maps n — [ — o(l) — n. We can therefore

write 0/ = & B 04, or equivalently P,» = P B id1 But this means, that the series within the feedback
ends with a concatenation and from our above rules we know how to handle this:

APl =[A< W), < (P Bid])]xn

=[Aaw™

U(m_n]k’—m < P&

= [Alkso) < Fs,

where we know that the reduced permutation is the well-defined restriction to n — 1 elements of ¢/ =

() ool

4. The last case is analogous to the previous one and we will only state the results without a derivation:
[Py <t Alk—s1 = Ps < [Alo—1 (1)1,

where the reduced permutation is given by the (again well-defined) restriction of w,,” . o 0 o w

(n) (n)
o~ 1(k)+n
ton — 1 elements.

3.4. Feedback of a series
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CHAPTER 4

Circuit Component Definition

The best way to get started on defining one’s own circuit component definition is to look at the examples provided in the
component library gnet . circuit_components. Every circuit component object is a python class definition that
derives off the class gnet.circuit_components.component .Component. The subclass must necessarily
overwrite the following class attributes of this Component class:

CDIM needs to be set to the full number (int) of input or output noises, i.e., the row dimension of the coupling
vector L or the scattering matrix S of the corresponding (S, L, H) model.

PORTSIN needs to be set to a list of port labels for the relevant input ports of the component, i.e., those that
could be connected to other components. The number of entries can be smaller or equal than CDIM.

PORTSOUT needs to be set to a list of port labels for the relevant output ports of the component, i.e., those that
could be connected to other components. The number of entries can be smaller or equal than CDIM.

If your model depends on parameters you should specify this both via the _params attribute and by adding a
class attribute with the name of the parameter and a default value that is either numeric or symbolic. Checkout
some of the existing modules such as gqnet.circuit_components.single_sided_opo_cc to see
how these parameters should be set.

If your model has internal quantum degrees of freedom, you need to implement the _space property. If your
model has a single quantum degree of freedom such as an empty cavity or an OPO, just follow the example
of gnet.circuit_components.single_sided_opo_cc (click on ‘source’ to see the source-code).
If your model’s space will be a tensor product of several degrees of freedom, follow the example of gnet.
circuit_components.single_sided_jaynes_cummings_cc, which defines Hilbert space prop-
erties for the different degrees of freedom and has the _space property return a tensor product of them.

In general, it is important to properly assign a unique name and namespace to all internal degrees of freedom to
rule out ambiguities when your final circuit includes more than one instance of your model.

Optionally, you may overwrite the name attribute to change the default name of your component.

Most importantly, the subclass must implement a _toSLH (self) : method. Doing this requires some knowledge
of how to use the operator algebra qnet .algebra.operator_algebra. For a component model with multiple
input/output ports with no direct scattering between some ports, i.c., the scattering matrix S is (block-) diagonal we
allow for a formalism to define this substructure on the circuit-symbolic level by not just defining a component model,

25
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but also models for the irreducible subblocks of your component. This leads to two alternative ways of defining the
circuit components:

1. Simple case, creating a symbolically irreducible circuit model, this is probably what you should go with:

This suffices if the purpose of defining the component is only to derive the final quantum equations of motion
for an overall system, i.e., no analysis should be carried out on the level of the circuit algebra but only on the
level of the underlying operator algebra of the full circuit’s (S, L, H) model.

Subclassing the Component class takes care of implementing the class constructor __init___ and this should
not be overwritten unless you are sure what you are doing. The pre-defined constructor takes care of handling
the flexible specification of model parameters as well as the name and namespace via its arguments. Le., for
a model named MyModel whose _parameters attribute is given by ['kappa', 'gamma'], one can
either specify all or just some of the parameters as named arguments. The rest get replaced by the default
values. Consider the following code examples:

MyModel (name = "M")

# —> MyModel (name = "M", namespace = "", kappa = MyModel.kappa, gamma = MyModel.
—gamma)

MyModel (name = "M", kappa = 1)

# —-> MyModel (name = "M", namespace = "", kappa = 1, gamma = MyModel.gamma)

MyModel (kappa = 1)
# —-> MyModel (name = MyModel.name, namespace = "", kappa = 1, gamma = MyModel.
—gamma)

The model parameters passed to the constructor are subsequently accessible to the object’s methods as instance
attributes. IL.e., within the _toSLH (self)-method of the above example one would access the value of the
kappa parameter as self.kappa.

2. Complex case, create a symbolically reducible circuit model:

In this case you will need to define subcomponent model for each irreducible block of your model. We will not
discuss this advanced method here, but instead refer to the following modules as examples:

* gnet.circuit_components.relay_cc
e gnet.circuit_components.single_sided_jaynes_cummings_cc

e gnet.circuit_components.double_sided_opo_cc

4.1 A simple example

As an example we will now define a simple (symbolically irreducible) version of the single sided jaynes cummings
model. The model is given by:
S =1,
= ()
Vyo-
H= AfaTa + Agoro_ +ig (0+a — a_aT)

Then, we can define the corresponding component class as:

from sympy import symbols, I, sqrt
from gnet.algebra.circuit_algebra import Create, LocalSigma, SLH, Destroy, local_
—space, Matrix, identity_matrix

(continues on next page)
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(continued from previous page)

class SingleSidedJaynesCummings (Component) :

CDIM = 2

name = "Qll

kappa = symbols ('kappa', real = True) # decay of cavity mode through cavity,,
—mirror

gamma = symbols ('gamma', real = True) # decay rate into transverse modes

g = symbols('g', real = True) # coupling between cavity mode and,_
—two—level-system

Delta_a = symbols('Delta_a', real = True) # detuning between the external
—driving field and the atom

Delta_f = symbols('Delta f', real = True) # detuning between the external
—driving field and the cavity

FOCK_DIM = 20 # default truncated Fock-space_,
—dimension

_parameters = ['kappa', 'gamma', 'g', 'Delta_a', 'Delta_f', 'FOCK_DIM']

PORTSIN = ['Inl', 'VacIn']

PORTSOUT = ['Outl', 'UOut']

@property

def fock_space(self):
"""The cavity mode's Hilbert space."""
return local_space ("f", make_namespace_string(self.namespace, self.name),
—dimension = self.FOCK_DIM)

@property
def tls_space(self):
"""The two-level-atom's Hilbert space."""
return local_space ("a", make_namespace_string(self.namespace, self.name),
—basis = ('h', 'g'))

@property
def _space(self):
return self.fock_space x self.tls_space

def toSLH(self):
a = Destroy(self.fock_space)

sigma = LocalSigma(self.tls_space, 'g', 'h')
H = self.Delta_f » a.dag() » a + self.Delta_a » sigma.dag() * sigma \
+ I » self.g * (sigma.dag() » a — sigma * a.dag())
L1 = sqgrt(self.kappa) * a
L2 = sqgrt(self.gamma) »* sigma
L = Matrix ([[L1],
[L2]11)

S = identity_matrix(2)
return SLH(S, L, H)

4.1. A simple example 27
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4.2 Creating custom component symbols for gschem

Creating symbols in gschem is similar to the schematic capture process itself:
1. Using the different graphical objects (lines, boxes, arcs, text) create the symbol as you see fit.

2. Add pins for the symbols inputs and outputs. Define their pintype (in or out) and their pinnumber (which
can be text or a number) according to the port names. Finally, define their pinseq attributes to match the order
of the list in the python component definition, so for the above example, one would need 4 pins, two inputs, two
outputs with the following properties:

e pintype=in, pinnumber=Inl, pinseg=il

e pintype=in, pinnumber=VacIn, pinseg=i2
* pintype=out, pinnumber=0utl, pinseg=o0l
* pintype=out, pinnumber=U0ut, pinseqg=02

3. Define the parameters the model depends on, by adding a params attribute to the top level circuit. For the
example above the correct param string would be:

kappa:real;gamma:real;g:real;Delta_a:real;Delta_f:real;FOCK_DIM:int:20

4. Add the name of the component by setting the device top-level-attribute, in this example to
SingleSidedJaynesCummings

5. Specity the default name by adding a refdes attribute that is equal to the default name plus an appended
question mark (e.g. 0?). When designing a circuit, this helps to quickly identify unnamed subcomponents.

The result could look something like this:

device=SingleSidedJaynesCummings
params=kappa:real;gamma:real;g:real;Delta_a:real;Delta_f:real;FOCK_DIM:int:20

pinseq=i1
pintype=in
In1

Out1
pintype=out’
pinseg=01"

uout Pinseq=o2
pintype=out

pinseq=i2 Vacin
pintype=in
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CHAPTER B

Schematic Capture

Here we explain how to create photonic circuits visually using gschem

1.
2.

From the ‘Add’ menu select ‘Component’ to open the component symbol library.
Layout components on the grid

Double-click the component symbols to edit the properties of each component instance. Be sure to set a unique
instance identifier re f de s-attribute.

If a component symbol has an attribute named params, its value should be under-
stood as a list of the form: paraml_name:paraml_type[:default_valuell];
param2_name:param2_type[:default_value2]; ... where the default values are optional.
To assign a value to a component param, add an attribute of the param name and set the value either to a
corresponding numerical value or to a parameter name of the overall circuit.

For all input and output ports of the circuit that are part of its external interface add dedicated input and output
pad objects. Assign names to them (re f de s-attribute) that correspond to their port names and assign sequence
numbers to them, numbering the inputsas 11, 12, ... and the outputsasol, o2,

Draw all internal signals to connect component ports with each other and with port objects.
Add a params-attribute to the whole circuit specifying all model parameters similarly to above.

Add a module—name-attribute to the whole circuit to specify its entity name. Please use
CamelCaseConventions for naming your circuit, because it will ultimately be the name of a Python class.

As an example, consider this screencast for creating a Pseudo-NAND-Latch.

29
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CHAPTER O

Netlisting

6.1 Using gnetlist

Given a well-formed gschem circuit specification file we can use the gnet 1ist tool that comes with the gEDA suite
to export it to a QHDL-file.

Using the command-line, if the . sch schematic file is located at the path my_dir/my_schematic. sch, and you
wish to produce a QHDL file at the location my_other_dir/my_netlist.ghdl, run the following command:

gnetlist —-g ghdl my_dir/my_schematic.sch -o my_other_dir/my_netlist.ghdl

It is generally a very good idea to inspect the produced QHDL file code and verify that it looks like it should before
trying to compile it into a python circuit_component library file.

6.2 The QHDL Syntax

A QHDL file consists of two basic parts:

1. An entity declaration, which should be thought of as defining the external interface of the specified circuit.
Le., it defines global input and output ports as well as parameters for the overall model.

2. A corresponding architecture declaration, that, in turn consists of two parts:

(a) The architecture head defines what fypes of components can appear in the circuit. Ie., for each
component declaration in the architecture head, there can exist multiple instances of that component
type in the circuit. The head also defines the internal signal lines of the circuit.

(b) The architecture body declares what instances of which component type exists in the circuit, how its ports
are mapped to the internal signals or entity ports, and how its internal parameters relate to the entity
parameters. In QHDL, each signal may only connect exactly two ports, where one of three cases is true:

i. It connects an entity input with a component instance input

ii. It connects an entity output with a component instance output

31



gnet Documentation, Release 1.4.1

iii. It connects a component output with a component input

Before showing some examples of QHDL files, we present the general QHDL syntax in somewhat abstract form.
Here, square brackets [optional] denote optional keywords/syntax and the ellipses . . . denote repetition:

—-— this is a comment

—-— entity definition
—-— this serves as the external interface to the circuit, specifying inputs and outputs
-— as well as parameters of the model
entity my entity is
[generic ( varl: generic_type [:= default_varl]] [; var2: generic_type [...]
=1);]
port (i_1,i_2,...i_n:in fieldmode; o_1,0_2,...0_n:out fieldmode);
end entity my entity;

—— architecture definition
—— this is the actual implementation of the entity in terms of subcomponents
architecture my_architecture of my_entity is

—-— architecture head

—-— each type of subcomponent, i.e. its ports and its parameters are defined here_
—similarly

—-— to the entity definition above

component my_ component

[generic ( var3: generic_type [:= default_var3]] [; var4d4: generic_type [...]
—..1)i]
port (pl,p2,...pm:in fieldmode; gl,g2,...gm:out fieldmode);
end component my_component;
[component my_ second_component
[generic ( varb: generic_type [:= default_varb5]] [; varé6: generic_type [...]
—..1)i]
port (pl,p2,...pr:in fieldmode; gl,g2,...gr:out fieldmode);
end component my_ second_ component;
]
-— internal signals to connect component instances
[signal s_1,s_2,s_3,...s_m fieldmode; ]
begin

-— architecture body

—— here the actual component instances are defined and their ports are mapped to,
—signals

-— or to global (i.e. entity-) ports

—-— furthermore, global (entity-) parameters are mapped to component instance_
—parameters.

COMPONENT_INSTANCE_ID1: my_component
[generic map (varl => var3, varl => vard);]

port map (i_1, i_2, ... i_m, s_1, s_2, ...s_m);

[COMPONENT_INSTANCE_ID2: my_component

(continues on next page)
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(continued from previous page)

varl => vard
o 1, o_2,

[generic map (varl => var3,

port map (s_1, s_2, s_m,

COMPONENT_INSTANCE_ID3:
[generic map (...);]
port map (...);

my_second_component

end architecture my_ architecture;

)il

...o_m);

where generic_typeisone of int, real, or complex.

6.2.1 QHDL-Example files:
A Mach-Zehnder-circuit

This toy-circuit realizes a Mach-Zehnder interferometer.

—-— Structural QHDL generated by gnetlist
—— Entity declaration

ENTITY MachZehnder IS
GENERIC (
alpha
phi
PORT (

complex;
real);

in fieldmode;

in fieldmode;

: out fieldmode;
d : out fieldmode);

END MachZehnder;

Q O o

—-— Secondary unit
ARCHITECTURE netlist OF MachZehnder IS
COMPONENT Phase

GENERIC (
phi real);

PORT (
Inl in fieldmode;
Outl out fieldmode) ;

END COMPONENT ;

COMPONENT Beamsplitter

GENERIC (

theta real := 0.7853981633974483);
PORT (

Inl in fieldmode;

In2 in fieldmode;

Outl out fieldmode;

Oout?2 out fieldmode) ;

END COMPONENT ;

COMPONENT Displace

(continues on next page)

6.2. The QHDL Syntax
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a [

pinseg=i1

module-name=MachZehnder
params=alpha:complex;phi:real

b [P

pinseg=i2
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(continued from previous page)

GENERIC (
alpha : complex);
PORT (
VIn : in fieldmode;
Outl : out fieldmode);
END COMPONENT ;

SIGNAL B12B2 : fieldmode;
SIGNAL W2B1 : fieldmode;
SIGNAL P2B2 : fieldmode;
SIGNAL B12P : fieldmode;
SIGNAL unnamed_net4 : fieldmode;
SIGNAL unnamed_net3 : fieldmode;
SIGNAL unnamed_net2 : fieldmode;
SIGNAL unnamed_netl : fieldmode;
BEGIN
—— Architecture statement part
W : Displace
GENERIC MAP (
alpha => alpha);
PORT MAP (
VIn => unnamed_netl,
Outl => W2B1l);

B2 : Beamsplitter
PORT MAP (
Inl => P2B2,
In2 => B12B2,
Outl => unnamed_net4,
Out2 => unnamed_net3);

Bl : Beamsplitter
PORT MAP (
Inl => W2B1,
In2 => unnamed_net2,
Outl => B12B2,
out2 => B12P);

P : Phase
GENERIC MAP (
phi => phi);
PORT MAP (
Inl => B12P,
Outl => P2B2);

-— Signal assignment part
unnamed_net2 <= b;
unnamed_netl <= a;

d <= unnamed_net4;

c <= unnamed_net3;

END netlist;

A Pseudo-NAND-gate

This circuit consists of a Kerr-nonlinear cavity, a few beamsplitters and a bias input amplitude to realize a NAND-gate
for the inputs A and B. For details see [Mabuchill].
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module-name=FseudoMAMND
params=Deltarreal;chi:real kappa:real;phi:real; thetarealbeta:complex Ll
D pinseq=i3
<
Delta=Delta
chi=chi =
kappa 1=kappa . Vibet
cinseq=i1 kappa Z=kappa * alpha=beta
K L 1
A [GH— Bst Y
T T BS2 irmsag=ol
7 oz 1 092 theta=theta
B B i PP BE1 ou
2 T w W2 T P
pinseq=i 175 T“?_ : )
- O —E N
In1 | | Ot
pinseq=o3
EE phi=phi
UCut1 UOut2 Win2
pinseqg=o1 pinseq=02 pinseqg=id

Fig. 1: The gschem schematic from which the QHDL file below was automatically created.
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—-— Structural QHDL generated by gnetlist
—-— Entity declaration

ENTITY PseudoNAND IS

GENERIC (
Delta : real;
chi : real;
kappa : real;
phi : real;
theta : real;
beta : complex);

PORT (

A : in fieldmode;

B : in fieldmode;

VInl : in fieldmode;

VIn2 : in fieldmode;

UOutl : out fieldmode;

UOut2 : out fieldmode;

NAND_AB : out fieldmode;

OUT2 : out fieldmode);
END PseudoNAND;

—-— Secondary unit
ARCHITECTURE netlist OF PseudoNAND IS
COMPONENT KerrCavity

GENERIC (
Delta : real;
chi : real;

kappa_1l : real;
kappa_2 : real);
PORT (
Inl : in fieldmode;
In2 : in fieldmode;
Outl : out fieldmode;
Out2 : out fieldmode);
END COMPONENT ;

COMPONENT Phase

GENERIC (
phi : real);
PORT (
Inl : in fieldmode;

Outl : out fieldmode);
END COMPONENT ;

COMPONENT Beamsplitter

GENERIC (

theta : real := 0.7853981633974483);
PORT (

Inl : in fieldmode;

In2 : in fieldmode;

Outl : out fieldmode;
Out2 : out fieldmode);
END COMPONENT ;

COMPONENT Displace

(continues on next page)

6.2. The QHDL Syntax
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(continued from previous page)

GENERIC (
alpha : complex);
PORT (
VacIn : in fieldmode;
Outl : out fieldmode);
END COMPONENT ;

SIGNAL unnamed_netll : fieldmode;
SIGNAL unnamed_netl0 : fieldmode;
SIGNAL unnamed_net9 : fieldmode;
SIGNAL unnamed_net8 : fieldmode;
SIGNAL unnamed_net7 : fieldmode;
SIGNAL unnamed_net6 : fieldmode;
SIGNAL unnamed_net5 : fieldmode;
SIGNAL unnamed_net4 : fieldmode;
SIGNAL unnamed_net3 : fieldmode;
SIGNAL unnamed_net2 : fieldmode;
SIGNAL unnamed_netl : fieldmode;
SIGNAL w : fieldmode;
BEGIN
—— Architecture statement part

W_lbeta : Displace
GENERIC MAP (

alpha => beta);
PORT MAP (

VacIn => unnamed_net6,

Outl => unnamed_netll);

BS2 : Beamsplitter
GENERIC MAP (
theta => theta);
PORT MAP (
Inl => unnamed_netll,
In2 => unnamed_net3,
Outl => unnamed_netlO0,
Out2 => unnamed_net8);

BS1 : Beamsplitter

PORT MAP (
Inl => unnamed_net4,
In2 => unnamed_netb5,
Outl => unnamed_net7,
out2 => w);

P : Phase

GENERIC MAP (
phi => phi);

PORT MAP (
Inl => unnamed_netlO,
Outl => unnamed_net9);

K : KerrCavity
GENERIC MAP (
Delta => Delta,
chi => chi,
kappa_1l => kappa,
kappa_2 => kappa);

(continues on next page)
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(continued from previous page)

PORT MAP (
Inl => w,
Outl => unnamed_netl,
In2 => unnamed_net2,
Out2 => unnamed_net3);

-— Signal assignment part
unnamed_net6 <= VInl;
unnamed_net2 <= VIn2;
unnamed_net5 <= B;
unnamed_net4d <= A;
NAND_AB <= unnamed_net9;
OUT2 <= unnamed_net8§;
UOut2 <= unnamed_netl;
UOutl <= unnamed_net7;
END netlist;

A Pseudo-NAND-Latch

This circuit consists of two subcomponents that each act almost (i.e., for all relevant input conditions) like a NAND
logic gate in a symmetric feedback conditions. As is known from electrical circuits this arrangement allows the
fabrication of a bi-stable system with memory or state from two systems that have a one-to-one input output behavior.
See also [Mabuchill]

——-pseudo-NAND latch with explicit parameter dependence
entity PseudoNANDLatch is
generic (Delta, chi, kappa, phi, theta : real;
beta : complex);

port (NS, Wl, kerr2_extra, NR, W2, kerrl_extra : in fieldmode;
BS1_1_out, kerrl_out2, OUT2_2, BS1_2_out, kerr2_out2, OUT2_1 : out
—fieldmode) ;
end PseudoNANDLatch;

architecture latch_netlist of PseudoNANDLatch is
component PseudoNAND
generic (Delta, chi, kappa, phi, theta : real;
beta : complex);
port (A, B, W_in, kerr_in2 : in fieldmode;
uol, kerr_outl, NAND_AB, OUT2 : out fieldmode);
end component;

signal FB12, FB21 : fieldmode; —-— feedback signals

begin
NAND2 : PseudoNAND
generic map (
Delta => Delta, chi => chi, kappa => kappa, phi => phi, theta => theta, beta_
—=> beta);
port map (
A => NR, B => FB12, W_in => W2, kerr_in2 => kerr2_extra,
uol => BS1_2_out, kerr_outl => kerr2_out2, NAND_AB => FB21, OUT2 => OUT2_2);

NAND1 : PseudoNAND
generic map (

(continues on next page)
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(continued from previous page)

Delta => Delta, chi => chi, kappa => kappa, phi => phi, theta => theta, beta_
—=> beta);
port map (
A => NS, B => FB21, W_in => Wl, kerr_in2 => kerrl_extra,
uol => BS1_1_out, kerr_outl => kerrl_out2, NAND_AB => FB12, OUT2 => OUT2_1);
end latch_netlist;
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Parsing QHDL

Given a QHDL-file my_circuit .ghdl which contains an entity named MyEnt ity (Note again the CamelCaseC-
onvention for entity names!), we have two options for the final python circuit model file:

1. We can compile it to an output in the local directory. To do this run in the shell:

’$QNET/bin/parse_qhdl.py —-f my_circuit.ghdl -1

2. We can compile it and install it within the module gnet . circuit_components. To do this run in the shell:

’$QNET/bin/parse_qhdl.py -f my_circuit.ghdl -L

In either case the output file will be named based on a CamelCase to lower_case_with_underscore convention with a
_cc suffix to the name. Le., for the above example MyEnt ity will become my_entity_cc.py. In the case of
entity names with multiple subsequent capital letters such as PseudoNAND the convention is to only add underlines
before the first and the last of the capitalized group, i.e. the output would be written to pseudo_nand_cc.py.

41



qnet Documentation, Release 1.4.1

42 Chapter 7. Parsing QHDL



CHAPTER 8

Symbolic Analysis and Simulation

8.1 Symbolic Analysis of the Pseudo NAND gate and the Pseudo
NAND SR-Latch

8.1.1 Pseudo NAND gate

In[1]:

from gnet.algebra.circuit_algebra import =«

In[2]:

from gnet.circuit_components import pseudo_nand_cc as nand

# real parameters
kappa = symbols('kappa', positive = True)
Delta, chi, phi, theta = symbols('Delta, chi, phi, theta', real = True)

# complex parameters
A, B, beta = symbols('A, B, beta')

N = nand.PseudoNAND ('N', kappa=kappa, Delta=Delta, chi=chi, phi=phi, theta=theta,
—beta=beta)
N

Out[2]:

Circuit Analysis of Pseudo NAND gate

In[3]:
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’N.creduce() ‘
Out[3]:
0 1 2 01 2 3
1. H ((11 EE|((NPEE|11) < N.BS2 « (W(ﬁ) Bﬂll))) <P, 0 2 1 < (NKEH]_l)) < (NBSlHﬂlQ) <P, 01 3 2
In[4]:
# yields a single block
N.show ()
# decompose into sub components
N.creduce () .show ()

static/PSeydoNANDAnalysis_files/PseudoNANDAnalysis_fig 00.png

static/PSeydoNANDAnalysis_files/PseudoNANDAnalysis_fig 01.png

SLH model
In[5]:
NSLH = N.coherent_input (A, B, 0, 0).toSLH()
NSLH
Out[5]:
V2 —3V2 0 0 3V2A - 4V2B
1/2 1,0 0 0 (3V2A+ 1V2B) + ran x 1 1 1 T
2 2 2 2 . =z -
0 0 e?cos (0) —e®sin(0) || Be*® cos (0) — /re*?sin (0) anxk |’ 2! 2\/§A\/E *3 V2BVE ) a i+ (
0 0 sin (6) cos (6) Bsin (0) + /k cos (0) an x

Heisenberg equation of motion of the mode operator «

In[6]:

S

= N.space
Destroy (s)

Out[6]:

In[7]:

aN.K
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NSLH.symbolic_heisenberg_eom(a) .expand () .simplify_scalar()

Out[7]:

1
5\/5\/% (—A—B) - (A +kK)ank — 22xaL.KaN,KaN,K

Super operator algebra: The system’s liouvillian and a re-derivation of the eom for « via the super-
operator adjoint of the liouvillian.

In[8]:

LLN = NSLH.symbolic_liouvillian() .expand() .simplify_scalar ()
LLN

Out[8]:
1 1 [
5\@\/5 (A + B) spost [aL.K] + 5\/5\/5 (—A — B) spost [an k] + vxspost aL_KaL.KaN,KaN_K + (1A — k) spost [aL.KaN_K} +

In[9]:

’(LLN.superadjoint() % a).expand() .simplify_scalar () ‘

Out[9]:

1
5\/5@ (—A—B)— (A +kK)ank — 22xaL.KaN,KaN,K

8.1.2 A full Pseudo-NAND SR-Latch

In[10]:

N1 = nand.PseudoNAND ('N_1"', kappa=kappa, Delta=Delta, chi=chi, phi=phi, theta=theta,
—beta=beta)
N2 = nand.PseudoNAND ('N_2"', kappa=kappa, Delta=Delta, chi=chi, phi=phi, theta=theta,
—beta=beta)

# NAND gates in mutual feedback configuration
NL = (N1 + N2).feedback (2, 4).feedback(5, 0).coherent_input (A, 0, 0, B, 0, 0)
NL

Out[10]:

{(13 AN,) < ((PU (8 ' g 3) aN,) @ 13>J5H0 < (W(A)E 1, BW(B) B 1,)

The circuit algebra simplification rules have already eliminated one of the two feedback operations in favor or a series
product.

In[11]:

NL.show ()

NL.creduce () .show ()
NL.creduce () .creduce () .show ()
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_static/PSeudoNANDAnalysis_files/PseudoNANDAnalysis_fig 02.png

_static/PSeudoNANDAnalysis_files/PseudoNANDAnalysis_fig 03.png

_static/PSeuydoNANDAnalysis_files/PseudoNANDAnalysis_fig_ 04.png

SLH model
In[12]:
NLSLH = NL.toSLH() .expand() .simplify_scalar ()
NLSLH
Out[12]
—1v2 0 0 0 LV2e cos ()  —1+/2e*sin (0 V2 (-A+ Be“i’ cos (0)) -
2 2 2
1/2 0 0 0 1/2e* cos (0) —11/2¢?sin (6 12 A + Be*® cos + /kan
2 2 2 2
0 sin (6) cos (0) 0 0 0 Bsin ( )+ VE
0 1V2e* cos (0) —1v2e?sin(0) —1v2 0 0 ’ 1V2 (=B + Be* cos (0)) -
0 1V2e*cos () —1v2e?sin(0)  1V2 0 0 V2 (B + Be'? cos (6)) — 32
0 0 0 0 sin (0) cos (6) Bsin (0) + /K

Heisenberg equations of motion for the mode operators

In[13]:

NL. space

Out[13]:
Ni. K® Ny .K

In[14]:

sl, s2 = NL.space.operands
al = Destroy(sl)
az = Destroy(s2)

In[15]:
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daldt = NLSLH.symbolic_heisenberg_eom(al) .expand() .simplify_scalar ()
daldt

Out[15]:
1 1 .
5\/2/% (—A - Be*? cos (0)) — (1A + k) an, x + 5\/5/-@6“1’ sin (0) an, x — QlXaTNl.KaNl-KaNl-K

In[16]:

da2dt = NLSLH.symbolic_heisenberg_eom(a2) .expand() .simplify_scalar ()
daz2dt

Out[16]:

1 1 )
ix/iﬁ (fB — Be*? cos (0)) + 5\/§I€€Z¢ sin (0) an, k — A+ K) an, K — 2zxaL2.KaN2.KaN2K

Show Exchange-Symmetry of the Pseudo NAND latch Liouvillian super operator

Simultaneously exchanging the degrees of freedom and the coherent input amplitudes leaves the liouvillian unchanged.

In[17]:

C = symbols('C")
LLNL = NLSLH.symbolic_liouvillian() .expand() .simplify_scalar ()
LLNL

Out[17]:
N V2y/k (e A — cos (0) B)

S spost [ax, k]

%\@\/E (A + Be*® cos (0)) spost [aLl.K} + %\/5\/% (B + Be* cos () spost {aTN?K}

In[18]:

C = symbols('C")
(LLNL.substitute ({A:C}) .substitute ({B:A}) .substitute ({C:B}) - LLNL.substitute({sl:s2,
—s2:sl}) .expand () .simplify_scalar()) .expand() .simplify_scalar ()

Out[18]:

8.2 Numerical Analysis via QuTiP

8.2.1 Input-Output Logic of the Pseudo-NAND Gate

In[19]:

NSLH. space

Out[19]:
N.K

In[20]:
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NSLH. space.dimension = 75

Numerical parameters taken from

Mabuchi, H. (2011). Nonlinear interferometry approach to photonic sequential logic. Appl. Phys. Lett. 99,
153103 (2011)

In[21]:

# numerical values for simulation
alpha = 22.6274 # logical 'one' amplitude

numerical_vals = {
beta: -34.289-11.9097,
kappa: 25.,
Delta: 50.,
chi : -50./60.,
theta: 0.891,
phi: 2.54¢,

bias input for pseudo-nands
Kerr—-Cavity mirror couplings
Kerr—-Cavity Detuning

Kerr—-Non-Linear coupling coefficient
pseudo—nand beamsplitter mixing angle

oW W W W W

pseudo—nand corrective phase

In[22]:
NSLHN = NSLH.substitute (numerical_vals)
NSLHN
Out[22]:
V2 —3V2 0 0
V2 3V2 0 0 (3V2A+1v2B) +
0 0 0.628634640249695¢2-246*  —0.777700770912654¢2:546* | ().628634640249695(——34.289-—].]..9092)62'546'1
0 0 0.777700770912654 0.628634640249695 —(26.666581733824 + 9.26163848079882
In[23]:
input_configs = [
(0,0),
(1, 0),
(0, 1),
(1, 1)

14

In[24]:

Lout = NSLHN.L[2,0]

Loutgt = Lout.to_qutip()

times = arange (0, 1., 0.01)

psi0 = gqutip.basis(N.space.dimension, 0)

datasets = {}

for ic in input_configs:
H, Ls = NSLHN.substitute({A: ic[0]*alpha, B: ic[l]xalpha}) .HL_to_qgutip/()
data = qutip.mcsolve(H, psiO, times, Ls, [Loutgt], ntraj = 1)
datasets[ic] = data.expect[0]

100.0% (1/1) Est. time remaining: 00:00:00:00
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’100.0% (1/1) Est. time remaining: 00:00:00:00

’100.0% (1/1) Est. time remaining: 00:00:00:00

’100.0% (1/1) Est. time remaining: 00:00:00:00

In[25]:

figure (figsize=(10, 8))
for ic in input_configs:

plot (times, real (datasets[ic])/alpha, '-', label = str(ic) + ", real")
plot (times, imag(datasets([ic])/alpha, '--', label = str(ic) + ", imag")
legend ()

xlabel ('Time $tS$', size = 20)
ylabel (r'$\langle L_out \rangle$ in logic level units', size = 20)
title('Pseudo NAND logic, stochastically simulated time \n dependent output,

—amplitudes for different inputs.', size = 20)

Out[25]:

<matplotlib.text.Text at 0x1100b7dd0>

_static/PSeudoNANDAnalysis_files/PseudoNANDAnalysis_fig_05.png

8.2.2 Pseudo NAND latch memory effect

In[26]:

NLSLH. space

Out[26]:
N;. K ® No.K
In[27]:
sl, s2 = NLSLH.space.operands
sl.dimension = 75
s2.dimension = 75

NLSLH. space.dimension

Out[27]:

5625

In[28]:

NLSLHN = NLSLH.substitute (numerical_vals)
NLSLHN
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Out[28]
—3V2 0 0 0 0.314317320124847/2¢% 516
V2 0 0 0 0.314317320124847/2¢%516
0 0.777700770912654 0.628634640249695 0 0
0 0.314317320124847v/2¢*546"  —(0.3888503854563271/2e2-546*  —1,/2 0
0 0.314317320124847v/2e*546"  —(.388850385456327/2¢2546"  1,/2 0
0 0 0 0 0.777700770912654
In[29]:
input_configs = {
"SET": (1, 0),
"RESET": (0, 1),
"HOLD": (1, 1)

models = {k: NLSLHN.substitute({A:v[0]*alpha, B:v[l]xalpha}).HL_to_qutip() for k, v

[

—in input_configs.items() }

In[30]:

al, a2 = Destroy(sl), Destroy(s2)

observables = [al.dag()*al, a2.dag()*a2]

observables_gt = [o.to_qutip(full_space = NLSLH.space) for o in observables]
In[31]:

def model_sequence_single_trajectory(models, durations, initial_state, dt):

mon

Solve a sequence of constant QuTiP open system models (H_i, [L_1_1i, IL_2 i, ...])
via Quantum Monte-Carlo. Each model is valid for a duration deltaT i and the,

—~initial state for

is given by the previous model's final state.
The function returns an array with the times and an array with the states at each,

~time.

options

:param models: Sequence of models given as tuples: (H_j, [L1j,L23,...])
:type models: Sequence of tuples

:param durations: Sequence of times

:type durations: Sequence of float

:param initial_state: Overall initial state

:type initial_ state: qutip.Qobj

:param dt: Sampling interval

stype dt: float

rreturn: times, states

:rtype: tuple((numpy.ndarray, numpy.ndarray)

mmon

totalT = 0

totalTimes = array ([])
totalStates = array([1])
current_state = initial_state

for j, (model, deltaT) in enumerate (zip (models, durations)):
print "Solving step {}/{} of model sequence".format(j + 1, len(models))
HQob3j, LQObjs = model
times = arange (0, deltaT, dt)
data = qutip.mcsolve (HQobj, current_state, times, LQObjs, [], ntraj = 1,
qutip. Odeoptions(gui = False))

(continues on next page)
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(continued from previous page)

# concatenate states
totalStates = np.hstack((totalStates,data.states.flatten()))

current_state = data.states.flatten () [-1]
# concatenate times
totalTimes = np.hstack((totalTimes, times + totalT))

totalT += times[—-1]

return totalTimes, totalStates

In[32]:

durations = [.5, 1., .5, 1.]
model_sequence = [models[v] for v in ['SET', 'HOLD', 'RESET', 'HOLD']]

initial_state = qutip.tensor(qutip.basis(sl.dimension, 0), qutip.basis(s2.dimension,
—0))

In[33]:

times, data = model_sequence_single_trajectory (model_sequence, durations, initial_

—state, 5e-3)

Solving step 1/4 of model sequence

100.0% (1/1) Est. time remaining: 00:00:00:00
Solving step 2/4 of model sequence

100.0% (1/1) Est. time remaining: 00:00:00:00
Solving step 3/4 of model sequence

100.0% (1/1) Est. time remaining: 00:00:00:00
Solving step 4/4 of model sequence

100.0% (1/1) Est. time remaining: 00:00:00:00

In[34]:

datanl = qutip.expect (observables_qgt[0], data)
datan2 = qutip.expect (observables_qgt[1l], data)

In[36]:

figsize (10, 6)

plot (times, datanl)

plot (times, datan2)

for t in cumsum(durations) :

axvline(t, color = "r'")
xlabel ("Time $tS$", size = 20)
ylabel ("Intra-cavity Photon Numbers", size = 20)
legend((r"$\langle n_1 \rangle $", r"$\langle n_2 \rangle $"), loc = 'lower right')
title ("SET - HOLD - RESET - HOLD sequence for $\overline S—latch"™, size = 20)
Out[36]:
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<matplotlib.text.Text at 0x1121d8990>

_static/PSeudoNANDAnalysis_files/PseudoNANDAnalysis_fig 06.png
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The gnet API

10.1 algebra Package

10.1.1 algebra Package
10.1.2 abstract_algebra Module

Abstract Algebra

The abstract algebra package provides a basic interface for defining custom Algebras.
See The Abstract Algebra module for more details.

exception gnet.algebra.abstract_algebra.AlgebraError
Bases: gnet.algebra.abstract_algebra.AlgebraException

Base class for all errors concerning the mathematical definitions and rules of an algebra.

exception gnet.algebra.abstract_algebra.AlgebraException
Bases: Exception

Base class for all errors concerning the mathematical definitions and rules of an algebra.

exception gnet.algebra.abstract_algebra.CannotSimplify
Bases: gnet.algebra.abstract_algebra.AlgebraException

Raised when an expression cannot be further simplified

class gnet.algebra.abstract_algebra.Expression
Bases: object

Basic class defining the basic methods any Expression object should implement.
all symbols ()
Returns The set of all_symbols contained within the expression.

Return type set

55



qnet Documentation, Release 1.4.1

substitute (var_map)
Substitute all_symbols for other expressions.

Parameters var_map (dict) - Dictionary with entries of the form {symbol:
substitution}

tex ()
Return a string containing a TeX-representation of self. Note that this needs to be wrapped by ‘$’ characters
for ‘inline’ LaTeX use.

class gnet.algebra.abstract_algebra.KeyTuple
Bases: tuple

class gnet.algebra.abstract_algebra.Match
Bases: dict

Subclass of dict that overloads the + operator to create a new dictionary combining the entries. It fails when
there are duplicate keys.

class gnet.algebra.abstract_algebra.NamedPattern (name, pattern)
Bases: gnet.algebra.abstract_algebra.Operation

Create a named (sub-)pattern for later use in processing elements of a matched expression.:

NamedPattern (name, pattern)

Parameters
* name (str) — Pattern identifier
* pattern (Expression, PatternTuple)— Pattern expression
class gnet.algebra.abstract_algebra.OperandsTuple
Bases: tuple
Specialized tuple to store expression operands for the purpose of matching them to patterns.

class gnet.algebra.abstract_algebra.Operation (*operands)
Bases: gnet.algebra.abstract_algebra.Expression

Abstract base class for all operations, where the operands themselves are also expressions.

classmethod create (*operands)
Instead of directly instantiating an instance of any subclass of Operation, it is advised to call the
create () classmethod instead. This method takes the same arguments as the constructor, but can pre-
process them and even return an object of a different type based on the operands.

Parameters operands — The operands for the operation.
operands

Returns The operands of the operation.

Return type tuple

classmethod order_key (0bj)
Provide a default ordering mechanism for achieving canonical ordering of expressions sequences.

Parameters obj — The object to create a key for.

class gnet.algebra.abstract_algebra.PatternTuple
Bases: tuple

Specialized tuple to store expression pattern operands.
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class gnet.algebra.abstract_algebra.Wildecard (name=", mode=1, head=None, condi-

tion=None)
Bases: gnet.algebra.abstract_algebra.Expression

Basic wildcard expression that can match a single expression or in the context of matching the operands of
an Operation object one may match one_or_more or zero_or_more operands with the same wildcards. If the
wildcard has a name, a successful match leads to a Match object in which the object that matched the wildcard is
stored under that name. One can also restrict the type of the matched Expression by providing a head argument
and the condition argument allows for passing a function that performs additional tests on a potential match.

condition = None
extra condition for a successful match (default = None, corresponding to no restriction).

head = None
head/type of the matched object (default = None, corresponding to no restriction).

mode =1
mode of the wildcard, i.e. how many operands it can match (default = single).

name = ''
name/identifier of the wildcard (default = *”).

one_or_more = 2
Value of Wildcard.mode for matching one or more operands/objects

single =1
Value of Wi ldcard.mode for matching single operands/objects

zero_or_more = 3
Value of Wi ldcard.mode for matching zero or more operands/objects

exception gnet.algebra.abstract_algebra.WrongSignatureError
Bases: gnet.algebra.abstract_algebra.AlgebraError

Raise when an operation is instantiated with operands of the wrong signature.

gnet.algebra.abstract_algebra.all_symbols (expr)
Return all all_symbols featured within an expression.

Parameters expr — The expression to find all_symbols in.
Returns A set of all_symbols within expr.
Return type set

gnet.algebra.abstract_algebra.assoc (dcls)
Associatively expand out nested arguments of the flat class.

>>> (@assoc

>>> class Plus (Operation):

>>> pass

>>> Plus.create(1,Plus(2,3))
Plus (1,2,3)

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_assoc () using preprocess_create _with ().

gnet.algebra.abstract_algebra.check_signature (dcls)
Check that the operands passed to the create classmethod of an Operation type conform to certain types. For
each allowed argument/operand, provide a tuple of types (or one of CLS, DCLS, see extended_isinstance docs).
E.g.
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>>> @check_signature
>>> class X (Operation):
>>> signature = str, (int, str)
>>>
>>> X.create("1", 2)
x("1", 2)
>>> X.create("1", "2")
x("im, m"2m)

The following all raise WrongSignatureError exception.

>>> X.create("1")
>>> X.create(l, "1")
>>> X.create("1", 2, 3)

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_check_signature () using preprocess_create_with ().

gnet.algebra.abstract_algebra.check_signature_assoc (dcls)
Like check_signature () but for assoc ()-decorated Operations. In this case the signature need only
contain a single entry.

>>> (@assoc
>>> @check_signature
>>> class X (Operation):

>>> signature = str
>>> X.create("hello", "you")
X("hello", "you")

The following then raises a WrongSignatureError because the third argument is no string

>>> X.create("hello", "you", 2)

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_check_signature_assoc () using preprocess_create_with ().

gnet.algebra.abstract_algebra.extended_isinstance (0bj, class_info, dcls, cls)
Like isinstance but with two extra arguments to allow for placeholder objects (DCLS, CLS) to stand for the
class objects passed as extra arguments dcls, cls. This allows one to specify a self-referential signature class
attribute to allow for recursive Operation signatures. E.g.

>>> @check_signature
>>> class X (Operation):
>>> signature = str, X

will yield an exception, because X within the class body refers to a class object that has not been defined yet.
Instead, one can do

>>> @check_signature
>>> class X (Operation):
>>> signature = str, CLS

to refer to the class of the object being instantiated (could be a subclass of X), or

>>> @check_signature
>>> class X (Operation):
>>> signature = str, DCLS
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to always refer to X itself and not a subclass.
Parameters
* obj (object)— The instance

* class_info (type or tuple of type-objects) — A type, DCLS, CLS, or a
tuple of these

* dels (type) — The (super-)class that the signature is defined for.
* cls (type) — The concrete (sub-)class whose instance is being initialized.

gnet.algebra.abstract_algebra.filter neutral (dcls)
Remove occurrences of a neutral element from the argument/operand list, if that list has at least two elements.
To use this, one must also specify a neutral element, which can be anything that allows for an equality check
with each argument. E.g.

>>> @filter_neutral
>>> class X (Operation):

>>> neutral_element = 1
>>> X.create(2,1,3,1)
X(2,3)

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_filter_neutral () using preprocess_create_with ().

gqnet.algebra.abstract_algebra.idem (dcls)
Remove duplicate arguments and order them via the cls’s order_key key object/function. E.g.

>>> (@idem

>>> class Set (Operation):

>>> pass

>>> Set.create(1,2,3,1,3)
Set (1,2,3)

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_idem() using preprocess_create _with ().

gnet.algebra.abstract_algebra.make_classmethod (method, cls)
Make a bound classmethod from an unbound method taking an additional first argument c1s

Parameters
* method (FunctionType) — The unbound method
* cls (type) — The class to bind it to

Returns Bound class method

Return type MethodType

gnet.algebra.abstract_algebra.match (pattern, expr)
Match a pattern against an expression and return a Match object if successful or False, if not. Works recursively.

Parameters

* pattern (Expression or PatternTuple) - Pattern expression

* expr (Expression or OperandsTuple)— Expression to match against the pattern.
Returns Match object or False

Return type Match or False
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gnet.algebra.abstract_algebra.match_range (paittern)
Compute how many objects/operands a given pattern can minimally and maximally match.

Parameters pattern — The pattern object

Returns min_number, max_number

Return type tuple

Raise ValueError, if unknown pattern mode for Wildcard object

gnet.algebra.abstract_algebra.match_replace (dcls)
Match and replace a full operand specification to a function that provides a replacement for the whole expression
or raises a CannotSimplify exception. E.g.

First define wildcards:

>>> A = WC(HAH)
>>> A_float = wc("A", head = float)

Then an operation:

>>> @match_replace
>>> class Invert (Operation):
>>> _rules = []

Then some _rules:

>>> Invert._rules += [

>>> ((Invert (A),), lambda A: A),
>>> ((A_float,), lambda A: 1./RA),
>>> ]

Check rule application:

>>> Invert.create ("hallo™) # matches no rule
Invert ("hallo")

>>> Invert.create (Invert ("hallo")) # matches first rule
"hallo"

>>> Invert.create(.2) # matches second rule
5.

A pattern can also have the same wildcard appear twice:

>>> @match_replace

>>> class X (Operation):

>>> _rules = [

>>> ((A, A), lambda A: A7),
>>> ]

>>> X.create(1l,2)
X(1,2)

>>> X.create(1,1)
1

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_match_replace () using preprocess_create_with().
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gnet.algebra.abstract_algebra.match_replace_binary (dcls)
Similar to match_replace (), but for arbitrary length operations, such that each two pairs of subsequent
operands are matched pairwise.

>>> A = wc ("A")

>>> @match_replace_binary
>>> class FilterDupes (Operation):

>>> _rules = [

>>> ((A,A), lambda A: A7),

>>> ]

>>> FilterDupes.create(l,2,3,4) # No subsequent duplicates present

FilterDupes (1,2,3,4)

>>> FilterDupes.create(1,2,2,3,4) # Some duplicates
FilterDupes (1,2,3,4)

Note that this only works for subsequent duplicate entries:

>>> FilterDupes.create(1,2,3,2,4) # Some duplicates, but not subsequent
FilterDupes(1,2,3,2,4)

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_match_replace_binary () using preprocess_create_with ().

gnet.algebra.abstract_algebra.mathematica (s)

gnet.algebra.abstract_algebra.orderby (dcls)
Re-order arguments via the class’s order_key key object/function. Use this for commutative operations: E.g.

>>> @Qorderby

>>> class Times (Operation):

>>> pass

>>> Times.create (2,1)
Times (1, 2)

Automatically generated class decorator based on the method gnet.algebra.abstract_algebra.
_orderby () using preprocess_create_with ().

gnet.algebra.abstract_algebra.preprocess_create_with (method)
This factory method allows for adding argument pre-processing decorators to a class’s create classmethod.

Parameters method (FunctionType) — A decorating create classmethod £ () with signature:
f (decorated_class, decorated_method, cls, =*args)

Returns A class decorator function that decorates the ‘create’ classmethod of the decorated class.
Return type FunctionType

gnet.algebra.abstract_algebra.prod (sequence, neutral=1)
Analog of the builtin sum() method. :param sequence: Sequence of objects that support being multiplied to each
other. :type sequence: Any object that implements __mul__() :param neutral: The initial return value, which is
also returned for zero-length sequence arguments. :type neutral: Any object that implements __mul__ () :return:
The product of the elements of sequence

gqnet.algebra.abstract_algebra.set_union (*sets)
Similar to sum (), but for sets. Generate the union of an arbitrary number of set arguments.

Parameters sets (set) — Sets to for the union of.
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Returns Union set.
Return type set

gnet.algebra.abstract_algebra.singleton (cls)
Singleton class decorator. Turns a class object into a unique instance.

Parameters cls (type) — Class to decorate
Returns The singleton instance of that class
Return type cls

gnet.algebra.abstract_algebra.substitute (expr, var_map)
(Safe) substitute, substitute objects for all symbols.

Parameters
* expr — The expression in which to perform the substitution

* var_map (dict) - The substitution dictionary. See gnet
abstract_algebra.substitute () documentation

gnet.algebra.abstract_algebra.tex (obj)
Parameters obj — Object to represent in LaTeX.
Returns Return a LaTeX string-representation of obj.
Return type str

gnet.algebra.abstract_algebra.unequals (x)

gnet.algebra.abstract_algebra.update_pattern (expr, match_obj)

.algebra.

Replace all wildcards in the pattern expression with their matched values as specified in a Match object.

Parameters
* expr (Expression or PatternTuple)— Pattern expression
* match_obj (Match)— Match object

Returns Expression with replaced wildcards

Return type Expression or PatternTuple

gnet.algebra.abstract_algebra.we (name_mode="_", head=None, condition=None)
Helper function to create a Wildcard object.

Parameters
* name_mode (str) - Combined name and mode (cf Wi Idcard) argument.

- "A" ->name="A", mode = Wildcard.single

— "A_" ->name="A", mode = Wildcard.single
— "B__ " ->name="B", mode = Wildcard.one_or_more
- "B " ->name="C", mode = Wildcard.zero_or_more

* head (tuple or ClassType or None)- See Wildcard doc
e condition (FunctionType or None)- See Wildcard doc
Returns A Wildcard object
Return type Wildcard
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10.1.3 hilbert_space_algebra Module

The Hilbert Space Algebra

This module defines some simple classes to describe simple and composite/tensor (i.e., multiple degree of freedom)
Hilbert spaces of quantum systems.

For more details see Hilbert Space Algebra.

exception gnet.algebra.hilbert_space_algebra.BasisNotSetError (local_space)
Bases: gnet.algebra.abstract_algebra.AlgebraError

Is raised when the basis states of a LocalSpace are requested before being defined.
Parameters local_space —

class gnet.algebra.hilbert_space_algebra.HilbertSpace
Bases: object

Basic Hilbert space class from which concrete classes are derived.
dimension
Returns The full dimension of the Hilbert space
Return type int

intersect (other)
Find the mutual tensor factors of two Hilbert spaces.

Parameters other (HilbertSpace) — Other Hilbert space

is_strict_subfactor_of (other)
Test whether a Hilbert space occures as a strict sub-factor in (larger) Hilbert space :type other: HilbertSpace

is_strict_tensor factor of (other)
Test if a space is included within a larger tensor product space. Not True if self == other.

Parameters other (HilbertSpace) — Other Hilbert space
Return type bool

is_tensor factor of (other)
Test if a space is included within a larger tensor product space. Also True if self == other.

Parameters other (HilbertSpace) — Other Hilbert space
Return type bool
local_ factors ()
Returns A sequence of LocalSpace objects that tensored together yield this Hilbert space.
Return type tuple of LocalSpace objects

remove (other)
Remove a particular factor from a tensor product space.

Parameters other (HilbertSpace) — Space to remove
Returns Hilbert space for remaining degrees of freedom.
Return type HilbertSpace

tensor (other)
Tensor product between Hilbert spaces
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Parameters other (HilbertSpace)— Other Hilbert space

Returns Tensor product space.

Return type HilbertSpace

class gnet.algebra.hilbert_space_algebra.LocalSpace (*operands)

Bases:

abstract_algebra.Operation

gnet.algebra.hilbert_space_algebra.HilbertSpace, gnet.algebra.

Basic class to instantiate a local Hilbert space, i.e., for a single degree of freedom.

LocalSpace (name, namespace)

Parameters

* name (str)— The identifier of the local space / degree of freedom

* namespace (str) — The namespace for the degree of freedom, useful in hierarchical

basis

system models.

Returns The set of basis states of the local Hilbert space

Return type sequence of int or str

classmethod create (*args)

Instead of directly instantiating an instance of any subclass of Operation, it is advised to call the
create () classmethod instead. This method takes the same arguments as the constructor, but
can preprocess them and even return an object of a different type based on the operands.

param operands The operands for the operation.

— LocalSpace.create() preprocessed by _check_signature —

Check that the operands passed to the create classmethod of an Operation type conform to certain
types. For each allowed argument/operand, provide a tuple of types (or one of CLS, DCLS, see
extended_isinstance docs). E.g.

>>>
>>>
>>>
>>>
>>>

>>>

@check_signature
class X (Operation):
signature = str, (int, str)

X.create ("1", 2)

X(lll", 2)
X.create ("1", "2")
X("l", "2")

The following all raise WrongSignatureError exception.

>>>
>>>
>>>

X.create("1")
X.create (1, "1")
X.create("1", 2, 3)

dimension

The local state space dimension.

signature

= (<class 'str'>, <class 'str'>)
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class gnet.algebra.hilbert_space_algebra.ProductSpace (*operands)
Bases: gnet.algebra.hilbert_space_algebra.HilbertSpace, gnet.algebra.
abstract_algebra.Operation

Tensor product space class for an arbitrary number of local space factors.

ProductSpace (xfactor_spaces)
Parameters factor_spaces (HilbertSpace)— The Hilbert spaces to be tensored together.
classmethod create (*args)

None — ProductSpace.create() preprocessed by _filter_neutral —

Remove occurrences of a neutral element from the argument/operand list, if that list has at least
two elements. To use this, one must also specify a neutral element, which can be anything that
allows for an equality check with each argument. E.g.

>>> @filter_neutral
>>> class X (Operation):

>>> neutral_element = 1
>>> X.create(2,1,3,1)
X(2,3)

— ProductSpace.create() preprocessed by _check_signature_assoc —

Like check_signature () butfor assoc () -decorated Operations. In this case the signature
need only contain a single entry.

>>> (@assoc
>>> @check_signature
>>> class X (Operation):

>>> signature str
>>> X.create("hello", "you")
X("hello", "you")

The following then raises a WrongSignatureError because the third argument is no string

>>> X.create("hello", "you", 2)

— ProductSpace.create() preprocessed by _idem —

Remove duplicate arguments and order them via the cls’s order_key key object/function. E.g.

>>> (@idem

>>> class Set (Operation):

>>> pass

>>> Set.create(1,2,3,1,3)
Set (1,2,3)

— ProductSpace.create() preprocessed by convert_to_spaces_mtd —

For all operands that are merely of type str or int, substitute LocalSpace objects with correspond-
ing labels: For a string, just itself, for an int, a string version of that int.

— ProductSpace.create() preprocessed by _assoc —

Associatively expand out nested arguments of the flat class.
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>>> (@assoc

>>> class Plus (Operation):

>>> pass

>>> Plus.create(1,Plus(2,3))
Plus (1,2,3)

neutral_element = TrivialSpace
signature = (<class 'gnet.algebra.hilbert_space_algebra.HilbertSpace'>,)

gnet.algebra.hilbert_space_algebra.convert_to_spaces_mtd (dcls, clsmtd, cls, *ops)
For all operands that are merely of type str or int, substitute LocalSpace objects with corresponding labels: For
a string, just itself, for an int, a string version of that int.

gnet.algebra.hilbert_space_algebra.local_space (name, namespace=", dimension=None,

basis=None)
Create a LocalSpace with by default empty namespace string. If one also provides a set of basis states, these get

stored via the BasisRegistry object. ALternatively, one may provide a dimension such that the states are simply
labeled by a range of integers:

[0, 1, 2, ..., dimension -1]

Parameters
* name (str or int)- Local space identifier
* namespace (str)— Local space namespace, see LocalSpace documentation
* dimension (int)— Dimension of local space (optional)

* basis (sequence of int or sequence of str) - Basis state labels for local
space

10.1.4 operator_ algebra Module

10.1.5 permutations Module
exception gnet.algebra.permutations.BadPermutationError
Bases: ValueError
Can be raised to signal that a permutation does not pass the :py:func:check permutation test.

gnet.algebra.permutations.block_perm and perms_within_blocks (permutation,

P . ) ) ) _ block_structure)
Decompose a permutation into a block permutation and into permutations acting within each block.

Parameters
* permutation (tuple)— The overall permutation to be factored.
* block_structure (tuple)— The channel dimensions of the blocks

Returns (block_permutation, permutations_within_blocks) Where
block_permutations is an image tuple for a permutation of the block indices and
permutations_within_blocks is a list of image tuples for the permutations of the
channels within each block

Return type tuple
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gnet.algebra.permutations.check_permutation (permutation)
Verify that a tuple of permutation image points (sigma (1), sigma(2), ..., sigma(n)) is a valid
permutation, i.e. each number from 0 and n-1 occurs exactly once. Le. the following set-equality must hold:

{sigma(l), sigma(2), ..., sigma(n)} == {0, 1, 2, ... n-1}

Parameters permutation (tuple)— Tuple of permutation image points
Return type bool

gnet.algebra.permutations.compose_permutations (alpha, beta)
Find the composite permutation

Parameters
* a — first permutation image tuple
* beta (tuple) - second permutation image tuple
Returns permutation image tuple of the composition.
Return type tuple
gnet.algebra.permutations.concatenate_permutations (q, b)

Concatenate two permutations: s=a[+] b

Parameters
* a (tuple) — first permutation image tuple
* b (tuple) - second permutation image tuple
Returns permutation image tuple of the concatenation.
Return type tuple
gnet.algebra.permutations.full_block_perm (block_permutation, block_structure)
Extend a permutation of blocks to a permutation for the internal signals of all blocks. E.g., say we have two
blocks of sizes (‘block structure’) (2, 3), then a block permutation that switches the blocks would be given

by the image tuple (1, 0). However, to get a permutation of all 243 = 5 channels that realizes that block
permutation we would need (2, 3, 4, 0, 1)

Parameters

* block_permutation (tuple)— permutation image tuple of block indices

e block_structure (tuple)— The block channel dimensions, block structure
Returns A single permutation for all channels of all blocks.
Return type tuple

gnet.algebra.permutations.invert_permutation (permutation)
Compute the image tuple of the inverse permutation. :param permutation: A valid (cf.
:py:func:check_permutation) permutation. :return: The inverse permutation tuple :rtype: tuple

gnet.algebra.permutations.permutation_from block_permutations (permutations)
Reverse operation to permutation_to_block_permutations () Compute the concatenation of per-
mutations
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(lrzlo) [+1 (01211) -—=> (112101315/4)

Parameters permutations (1ist of tuples)-— A list of permutation tuples [t = (t_0,
...,t.nl), uv= (uO,...,un2),..., z = (z_0,...,z_nm)]

Returns permutation image tuple s = t [+] u [+] ... [+] z

Return type tuple

gnet.algebra.permutations.permutation from disjoint_cycles (cycles, offset=0)
Reconstruct a permutation image tuple from a list of disjoint cycles :param cycles: sequence of disjoint cycles
:type cycles: list or tuple :param offset: Offset to subtract from the resulting permutation image points :type
offset: int :return: permutation image tuple :rtype: tuple

gnet.algebra.permutations.permutation_to_block_ permutations (permutation)
If possible, decompose a permutation into a sequence of permutations each acting on individual ranges of the
full range of indices. E.g.

(lr210131514) -—=> (11210) [+] (01211)
Parameters permutation (tuple) — A valid permutation image tuple s = (s_0, ...s_n)
withn > 0

Returns A list of permutation tuples [t = (t_0,...,t_nl), u = (u_0,...,u_n2),.
., z = (z_0,...,z_nm)] suchthats = t [+] u [+] [+] =z

Return type list of tuples
Raise ValueError
gnet.algebra.permutations.permutation_to_disjoint_cycles (permutation)

Any permutation sigma can be represented as a product of cycles. A cycle (c_1, .. c_n) is a closed sequence of
indices such that

sigma(c_1) ==c_2, sigma(c_2) == sigma”2(c_l)==c_3, ..., sigma(c_(n-1)) == c_n, sigma(c_n) ==
c 1

Any single length-n cycle admits n equivalent representations in correspondence with which element one defines
asc_1.

(0,1,2) ==(1,2,0) == (2,0,1)

A decomposition into disjoint cycles can be made unique, by requiring that the cycles are sorted by their smallest
element, which is also the left-most element of each cycle. Note that permutations generated by disjoint cycles
commute. E.g.,

(1,0, 3,2) == ((1,0),(3,2)) = ((0,1),(2,3)) normal form

Parameters permutation (tuple)— A valid permutation image tuple
Returns A list of disjoint cycles, that when comb
Return type list
Raise BadPermutationError
gnet.algebra.permutations.permute (sequence, permutation)
Apply a permutation sigma({j}) to an arbitrary sequence.

Parameters
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* sequence — Any finite length sequence [1_1,1_2,...1_n]. Ifitis alist, tuple or str,
the return type will be the same.

* permutation (tuple)— permutation image tuple
Returns The permuted sequence [1_sigma (1), 1_sigma(2), ..., 1l_sigma(n)]

Raise BadPermutationError or ValueError
10.1.6 circuit_algebra Module

10.1.7 state_algebra Module

10.1.8 super operator_algebra Module
10.2 circuit_components Package

10.2.1 circuit_components Package

This module contains all defined primitive circuit component definitions as well as the compiled circuit definitions that
are automatically created via the SQNET /bin/parse_ghdl.py script. For some examples on how to create your
own circuit definition file, check out the source code to

* gnet.circuit_components.single_sided_jaynes_cummings_cc
* gnet.circuit_components.three_port_opo_cc
* gnet.circuit_components.kerr_cavity_cc

The module gnet .circuit_components.component features some base classes for component definitions
and the module gnet.circuit_components.library features some utility functions to help manage the cir-
cuit component definitions.

10.2.2 beamsplitter_cc Module
10.2.3 component Module

10.2.4 delay cc Module

10.2.5 displace_cc Module

10.2.6 double_sided_opo_cc Module
10.2.7 kerr_cavity cc Module

10.2.8 library Module
This module features some helper functions for automatically creating and managing a library of circuit component
definition files.

gnet.circuit_components.library.camelcase_to_underscore (st)
Convert a camelcase entity name into an appropriate underscore name to import its corresponding module
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gnet.circuit_components.library.getCDIM (component_name)
Get the channel dimension of a referenced subcomponent

Parameters component_name (str)— The entity name of the component
Returns The channel dimension of the component.

Return type int

gnet.circuit_components.library.make_namespace_string (namespace, sub_name)
Make a namespace string by combining a namespace string with a new name.

Parameters

* namespace (str)— The namespace so far

¢ sub_name (str) - The additional name to add/
Returns The combined namespace

Return type str

gnet.circuit_components.library.write_component (entity, architectures, local=False)
Write a new entity definition to a python module file.

Parameters
* entity (gnet.ghdl.qghdl.Entity)— The entity object

* architectures (dict) - A (dictionary of architectures dict (name =
architecture) associated with the entity.

* local (bool) — Whether or not to store the created module in the current/local directory
or install it in :py:module:gnet . circuit_components, default=False

Returns The filename of the new module.

Return type str
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10.2.9 linear cavity_ cc Module

10.2.10 mach_zehnder cc Module

10.2.11 open_lossy_cc Module

10.2.12 phase_cc Module

10.2.13 pseudo_nand_cc Module

10.2.14 pseudo_nand_latch_cc Module

10.2.15 relay_cc Module

10.2.16 single_sided_ jaynes_cummings_cc Module
10.2.17 single_sided_opo_cc Module

10.2.18 three_port_opo_cc Module

10.2.19 zprobe_cavity_ cc Module

10.3 misc Package

10.3.1 misc Package
10.3.2 circuit_visualization Module
10.3.3 parse_circuit_strings Module

10.3.4 parser Module

Generic Parser class.

class gnet.misc.parser.Parser (**%w)
Bases: object

Base class for a lexer/parser that has the _rules defined as methods
parse (inputstring)

parse_f£file (filename)

precedence = ()

tokens = ()

exception gnet.misc.parser.ParsingError
Bases: SyntaxError

Raised for parsing error.
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10.3.5 gsd_codegen Module

10.3.6 trajectory _data Module

class gnet.misc.trajectory_data.TrajectoryData (ID, dt, seed, n_trajectories, data)
Bases: object

Tabular data of expectation values for one or more trajectories. Multiple TrajectoryData objects can be combined
with the extend method, in order to accumulate averages over an arbitrary number o trajectories. As much
as possible, it is checked that all trajectories are statistically independent. A record is kept to ensure exact
reproducability.

Attribute ID A unique ID for the current state of the TrajectoryData (read-only). See property
documentation below

Attribute table A table (OrderedDict of column names to numpy arrays) that contains four col-
umn for every known operator (real/imaginary part of the expectation value, real/imaginary part
of the variance). Note that the fable attribute can easily be converted to a pandas DataFrame
(DataFrame (data=traj.table)). The table attribute should be considered read-only.

Attribute dt Time step between data points
Attribute nt Number of time steps / data points
Attribute operators

An iterator of the operator names. The column names in the fable attribute derive from
these. Assuming “X” is one of the operator names, there will be four keys in table:

“Re[<X>]7, “Im[<X>]7, “Re[var(X)]”, “Im[var(X)]”

Attribute record A copy of the complete record of how the averaged expectation values for all
operators were obtained. See indepth discussion in the property documentation below.

Attribute col_width width of the data columns when writing out data. Defaults to 25 (allowing to
full double precision). Note that operator names may be at most of length col_width-10

ID
A unique RFC 4122 complient identifier. The identifier changes whenever the class data is modified (via
the extend method). Two instances of TrajectoryData with the same ID are assumed to be identical

col_width = 25

copy ()
Return a (deep) copy of the current object

dt
Time step between data points

extend (other)
Extend data with another Trajectory data set, averaging the expectation values. Equivalently to trajl.
extend (traj2),thesyntax trajl += traj2 may be used.

Raises ValueError - if data in self and other are incompatible

classmethod from_qgsd_data (operators, seed, workdir=".")
Instantiate from one or more QSD output files specified as values of the dictionary operators

Each QSD output file must have the following structure: * The first line must start with the string “Num-
ber_of_Trajectories”,

followed by an integer (separated by whitespace)
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 All following lines must contain five floating point numbers (time, real/imaginary part of expectation
value, and real/imaginary part of variance), separated by whitespace.

All QSD output files must contain the same number of lines, specify the same number of trajectories, and
use the same time grid values (first column). It is the user’s responsibility to ensure that all out output
files were indeed generated in a single QSD run using the specified initial seed for the random number
generator.

Parameters

* operators (dict (str) => str) — dictionary (preferrably OrderedDict) of oper-
ator name to filename. The filenames are relative to the workdir. Each filename must
contain data in the format described above

* seed (int)—The seed to the random number generator that was used to produce the data
file

* workdir — directory to which the filenames in operators are relative to
‘type workdir: str
Raises ValueError —if any of the datafiles do not have the correct format or are inconsistent

Note: Remember that is is vitally important that all quantum trajectories that go into an average are sta-
tistically independent. The TrajectoryData class tries as much as possible to ensure this, by refusing to
combine indentical IDs, or trajectories originating from the same seed. To this end, in the from_gsd_data
method, the ID of the instantiated object will depend uniquely on the collective data read from the QSD
output files.

n_trajectories (operator)
Return the total number of trajectories for the given operator

classmethod new_id (name=None)
Generate a new unique identifier, as a string. The identifier will be RFC 4122 compliant. If name is None,
the resulting ID will be random. Otherwise, name must be a string that the ID will depend on. That is,
calling new_id repeatedly with the same name will result in identical IDs.

nt
Number of time steps / data points

operators
Iterator over all operators

classmethod read (filename)
Read in TrajectoryData from the given filename. The file must be in the format generated by the write
method.

Raises TrajectoryParserError — if the file has an incorrect format

record
A copy of the full trajectory record, i.e. a history of calls to the extend method. Its purpose is to ensure
that the data is completely reproducible. This entails storing the seed to the random number generator for
all sets of trajectories.

The record is an OrderedDict that maps the original ID of any TrajectoryData instance combined via
extend to atuple (seed, n_trajectories, ops), where seed is the seed to the random number
generator that was used to calculate a specific set of trajectories (sequentially), n_trajectories are
the number of trajectories in that dataset, and ops is a list of operator names for which expectation values
were calculated. This may be the complete list of operators in the operators attribute, or a subset of those
operators (Not all trajectories have to include data for all operators).
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For example, let’s assume we have used the QSDCodeGen class to set up a QSD propagation. Two
observables ‘X1°, ‘X2’, have been set up to be written to file ‘X1.out’, and ‘X2.out’. The QSDCode-
Gen.set_trajectories method has been called with n_trajectories=10, after which a call to QSDCode-
Gen.run with argument seed=SEED]I, performed a sequential propagation of 10 trajectories, with the
averaged expectation values written to the output files.

This data may now be read into a new TrajectoryData instance traj via the from_qgsd_data class method
(with seed=SEEDI). The newly created instance (with, let’s say, ID="'8d102e4b—. .. ") will have one
entry in its record:

‘8d102e4b-...’: (SEEDI, 10, [‘X1’, ‘X2’])

Now, let’s say we add a new observable ‘A2’ (output file ‘A2.out’) for the QSDCodeGen (in addition to
the existing observables X1, X2), and run the QSDCodeGen.run method again, with a new seed SEED?2.
We then update traj with a call such as

traj.extend(TrajectoryData.from_qsd_data( {‘X1’:’X1.out’, ‘X2’:’X2.out’, ‘A2’:’A2.out’},
SEED2)

The record will now have an additional entry, e.g.
‘d9831647-...°: (SEED2, 10, ['X1’, ‘X2’, ‘A2’])

traj.table will contain the averaged expectation values (average over 20 trajectories for ‘X1’, ‘X2’, and 10
trajectories for ‘A2’). The record tells use that to reproduce this table, 10 sequential trajectories starting
from SEED1 must be performed for X1, X2, followed by another 10 trajectories for X1, X2, A2 starting
from SEED2.

record_IDs
Set of all IDs in the record

record_seeds
Set of all random number generator seeds in the record

shape

“Tuple (n_row, n_cols) for the data in self.table. The time grid is included in the column count
tgrid

Time grid, as numpy array

to_str (show_rows=-1)
Generate full string represenation of TrajectoryData

Parameters show_rows (int)—If given > 0, maximum number of data rows to show. If there
are more rows, they will be indicated by an ellipsis (*...")

Raises ValueError - if any operator name is too long to generate a label that fits in the limit
given by the col_width class attribute

write (filename)
Write data to a text file. The TrajectoryData may later be restored by the read class method from the same
file

exception gnet.misc.trajectory_data.TrajectoryParserError
Bases: Exception

Exception raised if a TrajectoryData file is malformed
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10.4 ghdl Package

10.4.1 ghdl Package

10.4.2 ghdl Module

This module contains the code to convert a circuit specified in QHDL into a Gough-James circuit expression.

The other module in this package ghdl_parser implements an actual parser for the ghdl source text, while this file
then converts structured netlist information into a circuit expression.

For more details on the QHDL syntax, see The QHDL Syntax.

class gnet.ghdl.ghdl.Architecture (identifier, entity, components, signals, assignments,

global_assignments={})
Bases: gnet.qghdl.qghdl.QHDLOb ject

global_in = {}
global_inout = {}
global_out = {}
in_to_signal = {}
inout_to_signal = {}
[1

{}
signal_to_global_in = {}

lossy_signals

out_to_signal

signal_to_global out = {}
signals = []

to_circuit (identifier_postfix="")
Compute a circuit algebra expression from the QHDL code and return the circuit expression, the
all_symbols appearing in it and the component instance assignments

to_qghdl (tab_level=0)

class gnet.ghdl.ghdl.BasicInterface (identifier, generics, ports)
Bases: gnet.ghdl.qghdl.QHDLOb ject

cid =0

generic_identifiers
The generic_identifiers property.

generics_to_qghdl (tab_level)

gids
The generic_identifiers property.

in_port_identifiers = []
inout_port_identifiers = []
out_port_identifiers = []

port_identifiers
The port_identifiers property.
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ports_to_qghdl (tab_level)
to_qghdl (tab_level)

class gnet.ghdl.ghdl.Component (identifier, generics, ports)
Bases: gnet.ghdl.ghdl.BasicInterface

to_qghdl (tab_level=0)

class gnet.ghdl.ghdl.Entity (identifier, generics, ports)
Bases: gnet.qghdl.ghdl.BasicInterface

to_qghdl (tab_level=0)

exception gnet.ghdl.ghdl.QHDLError
Bases: Exception

class gnet.ghdl.ghdl.QHDLObject
Bases: object

to_python ()

to_qghdl ()
gnet.ghdl.ghdl.dict_keys_sorted_by_val (dd)
gnet.ghdl.ghdl.gtype_ compatible (c_t, g_t)

gnet .ghdl.qghdl.my_debug (msg)

10.4.3 ghdl_parser Module

The PLY-based QHDLParser class.

class gnet.ghdl.ghdl_parser.QHDLParser ( **kw)
Bases: gnet.misc.parser.Parser

create_circuit_1lib (arch_id=None)

p_architecture_declaration (p)
architecture_declaration : ARCHITECTURE ID OF ID IS architecture_head BEGIN in-
stance_mapping_assignment_list feedleft_assignment_list END opt_arch opt_id SEMI

p_architecture_head (p)
architecture_head : component_declaration_list signal_list

p_complex (p)
complex : LPAREN simple_number COMMA simple_number RPAREN

p_component_declaration (p)
component_declaration : COMPONENT ID generic_clause port_clause END COMPONENT opt_id
SEMI

p_component_declaration_1list (p)
component_declaration_list [component_declaration_list component_declaration]

component_declaration

p_empty (p)
empty :

p_entity_declaration (p)
entity_declaration : ENTITY ID IS generic_clause port_clause END opt_entity opt_id SEMI
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p_error (p)
p_feedleft_assignment (p)
feedleft_assignment [ID FEEDLEFT ID SEMI]
empty
p_feedleft_assignment_1list (p)
feedleft_assignment_list [feedleft_assignment_list feedleft_assignment]
feedleft_assignment
p_feedright_generic_assignment (p)
feedright_generic_assignment [ID FEEDRIGHT id_or_value]
id_or_value
p_feedright_generic_assignment_list (p)

feedright_generic_assignment_list [feedright_generic_assignment_list COMMA
feedright_generic_assignment]

feedright_generic_assignment
p_feedright_port_assignment (p)
feedright_port_assignment [ID FEEDRIGHT ID]
ID
p_feedright_port_assignment_list (p)

feedright_port_assignment_list [feedright_port_assignment_list COMMA
feedright_port_assignment]

feedright_port_assignment
pP_generic_clause (p)
generic_clause [generic_statement]
empty
p_generic_default (p)
generic_default [ASSIGN number]
empty

pP_generic_entry group (p)
generic_entry_group : id_list COLON generic_type generic_default

p_generic_list (p)
generic_list [generic_list SEMI generic_entry_group]
generic_entry_group
P_generic_map (p)
generic_map [GENERIC MAP LPAREN feedright_generic_assignment_list RPAREN SEMI]
empty

P_generic_statement (p)
generic_statement : GENERIC LPAREN generic_list opt_semi RPAREN SEMI
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p_generic_type (p)
generic_type : REAL | COMPLEX | INT

p_id_list (p)
id_list [id_list COMMA ID]
ID

p_id_or_value (p)
id_or_value [ID]
number

p_instance_mapping_ assignment (p)
instance_mapping_assignment : ID COLON ID generic_map port_map

p_instance_mapping assignment_list (p)

instance_mapping_assignment_list [instance_mapping_assignment_list
stance_mapping_assignment]

instance_mapping_assignment

p_int (p)
int : ICONST

p_io_port_entry group (p)
io_port_entry_group : id_list COLON INOUT signal_type

p_non_io_port_entry group (p)
non_io_port_entry_group : id_list COLON signal_direction signal_type

p_non_io_port_1list (p)
non_io_port_list [non_io_port_entry_group SEMI non_io_port_list ]
non_io_port_entry_group
p_number (p)
number [simple_number]
complex
p_opt_arch (p)
opt_arch [ARCHITECTURE]
empty
p_opt_entity (p)
opt_entity [ENTITY]

empty
p_opt_id(p)
opt_id [ID]
empty

p_opt_semi (p)
opt_semi [SEMI]

empty

in-
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p_port_clause (p)
port_clause [port_statement]
empty
p_port_list (p)
port_list [with_io_port_list]
non_io_port_list
p_port_map (p)
port_map [PORT MAP LPAREN feedright_port_assignment_list RPAREN SEMI]
empty

p_port_statement (p)
port_statement : PORT LPAREN port_list opt_semi RPAREN SEMI

p_real (p)
real : FCONST

p_signal_direction (p)
signal_direction [IN]
ouT

p_signal_entry_ group (p)
signal_entry_group : SIGNAL id_list COLON signal_type SEMI

p_signal_list (p)
signal_list [signal_list signal_entry_group]
signal_entry_group
p_signal_type (p)
signal_type [FIELDMODE ]
LOSSY_FIELDMODE
p_simple_ number (p)
simple_number [int]
real
p_top_level list (p)
top_level_list [top_level_list top_level_unit]
top_level_unit
p_top_level_unit (p)
top_level_unit [entity_declaration ]
architecture_declaration
p_with_io_port_list (p)
with_io_port_list [io_port_entry_group SEMI non_io_port_list ]
io_port_entry_group

parse (inputstring)
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reserved = {'architecture':

start = 'top_level_ list'
t_ASSIGN = ':='

t_COLON = ':'

t_ COMMA = ', '

t_FCONST =
t_FEEDLEFT = '<='

t_FEEDRIGHT = '=>'

t_ICONST = '-=2?\\d+'
t_ID (1)

[_A-Za-z][w_]*
t_LPAREN = '\\ ('
t_NEWLINE (¢)

n+
t_RPAREN = '\\)'
t_SEMI = ';'
t_comment (f)

_[/\n]ﬂ<
t_error (1)
t_ignore = ' \t\xOc'
tokens = ['INT', 'MAP',

'"BEGIN',

'GENERIC'

'ARCHITECTURE',

=2 ((\\d+) (\\.\\d+) (e (\\+]-) 2 (\\d+))?

4

'begin’:

'OuT’,

'BEGIN', 'complex':

(\\d+)e (\\+]1-) 2 (\\d+)) '

'OF', 'LOSSY FIELDMODE',
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BasisNotSetError, 63

block_perm_and_perms_within_blocks() (in module
gnet.algebra.permutations), 66

C

camelcase_to_underscore() (in module
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cid (qnet.ghdl.ghdl.BasicInterface attribute), 75
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concatenate_permutations() (in module

gnet.algebra.permutations), 67
(gnet.algebra.abstract_algebra.Wildcard at-
tribute), 57

condition

convert_to_spaces_mtd() (in module

gnet.algebra.hilbert_space_algebra), 66

copy() (gnet.misc.trajectory_data.TrajectoryData
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